

d.velop AG

Schildarpstraße 6–8

Germany, 48712 Gescher

Fon +49 2542 9307-0

Fax +49 2542 9307-20

www.d-velop.de

info@d-velop.de

d.3 hook & server scripting api (groovy)

http://www.d-velop.de
mailto:info@d-velop.de

Inhaltsverzeichnis

1 Impressum/ Rechtliche Hinweise... 1

2 Einleitung.. 3

2.1 Über diese Dokumentation.. 3

2.2 Voraussetzungen ... 3

2.3 Groovy .. 3

3 Entwicklungsumgebung .. 5

3.1 Eclipse als Entwicklungsumgebung ... 6

3.2 Erstellen von Hook-Projekten ... 8

3.3 IntelliJ IDEA als Entwicklungsumgebung..13

4 Groovy Hook-Typen .. 16

4.1 d.3-Eintrittspunkte...16

4.1.1 Abhängige Dateien .. 20

4.1.2 Aktualisieren der Eigenschaftswerte (UpdateAttributes) .. 23

4.1.3 Dokumentanlage (ImportDocument) .. 29

4.1.4 Dokumente freigeben (ReleaseDocument) ... 38

4.1.5 Dokument prüfen (VerifyDocument)... 42

4.1.6 Dokumentsuche (GetDocumentList/SearchDocument) .. 44

4.1.7 Einspielen einer neuen Version (ImportNewVersionDocument)... 51

4.1.8 Erzeugen/ Bearbeiten von TIFF- oder PDF-Dokumenten .. 62

4.1.9 Login ... 67

4.1.10 Löschen eines Dokuments (DeleteDocument) .. 70

4.1.11 Löschen von Verknüpfungen (Unlink).. 74

4.1.12 Postkorb (SendHoldFile)... 77

4.1.13 Redlining (WriteRedline) .. 78

4.1.14 Senden einer Wiedervorlage (SendHoldfile).. 82

4.1.15 Senden von E-Mails bei Wiedervorlage ... 88

4.1.16 Sperren eines Dokuments .. 93

4.1.17 Stammdaten.. 96

4.1.18 Statustransfer ... 97

4.1.19 Validieren von Eigenschaftswerten (ValidateAttributes) ... 100

4.1.20 Verknüpfen von Dokumente bzw. Akten (LinkDocuments).. 107

4.1.21 Web-Veröffentlichung .. 109

4.1.22 Workflow ... 119

4.2 Validierungshooks ...120

4.3 Wertemengen-Hooks ..123

4.4 Dokumentklassen-Hooks..131

4.5 Groovy-Schnittstelle in d.3 admin...134

4.6 Programmierung von Hook-Funktionen..135

4.7 d.3-dynamische Rückmeldungen aus den Hook-Funktionen ..140

4.8 Nummernkreis für Returnwerte ...140

4.9 Nutzung des Transportsystems für Groovy-Funktionen..141

5 Groovy API-Funktionen..143

5.1 Groovy-API und Nutzung in JPL ..144

6 Groovy-Skripte...149

7 d.3-Schnittstelle (D3Interface)...151

7.1 d.3 Archiv (ArchiveInterface) ...152

7.1.1 Archivobjekte (ArchiveObject) .. 153

7.1.2 Dokument (Document) ... 155

7.1.3 Dokumentart (DocumentType)... 163

7.1.4 Benutzer (User)... 164

7.1.5 Benutzergruppen (UserGroup/UserOrUserGroup)... 166

7.1.6 Wertemengen (PredefinedValueSet) .. 167

7.1.7 Eigenschaftsfelder (RepositoryField) .. 168

7.1.8 Berechtigungsprofil (AuthorizationProfile) ... 168

7.2 d.3 SQL Datenbank (SqlD3Interface) ...168

7.3 Client API (D3RemoteInterface) ...171

7.4 Server API Funktionen (ScriptCallInterface)...174

7.5 Config-Parameter (ConfigInterface) ..178

7.6 Logging (LogInterface) ...179

7.7 Hook-Eigenschaften (HookInterface) ..179

7.8 Fehlerbehandlung (D3Exception)...180

7.9 Storagemanager...181

7.10 d.3-Systemeigenschaften ...181

8 Debugging ..183

8.1 Remote Debugging mit Eclipse...183

8.2 Remote Debugging mit IntelliJ IDE..185

9 Groovy-Grundlagen...188

9.1 Variablen und Strings ..189

9.2 Bedingungen...191

9.3 Schleifen...193

9.4 Closures..195

9.5 Datenbankanbindung..196

9.6 d.3-Specials..199

9.6.1 d.3-Konfigurationsparameter auslesen... 199

9.6.2 Klasse für globale Konstanten .. 200

10 Groovy-Hook-Beispiele ..202

10.1 Eintrittspunkte ...202

10.1.1 InsertEntry_10 .. 204

10.1.2 InsertExit_20 ... 208

10.1.3 UpdateAttribEntry_20 .. 214

10.1.4 Eine Klasse, mehrere Hook-Funktionen .. 217

10.2 Validierung ..220

10.3 Wertemengen...223

10.4 Dokumentklassen ..231

d.3 hook & server scripting api (groovy)

1

1 Impressum/ Rechtliche Hinweise
Alle bisherigen Dokumentationen zu d.3 server scripting api (groovy) verlieren mit der Veröffentlichung

dieser Dokumentation ihre Gültigkeit.

Die in dieser Dokumentation enthaltenen Informationen sind mit größter Sorgfalt erstellt und durch unsere Qualitätssicherung nach dem

allgemeinen Stand der erprobten Technik geprüft. Dennoch sind Fehler nicht auszuschließen. Aus diesem Grund stellen die in der

vorliegenden Dokumentation enthaltenen Informationen keine Verpflichtung, zugesicherte Eigenschaft oder Garantie dar. Die d.velop

AG übernimmt auf Basis dieser Dokumentation keine Haftung oder Gewährleistung. Ansprüche nach dem Produkthaftungsgesetz sowie

nach Deliktsrecht bleiben unberührt, sofern sie nicht individualvertraglich ausgeschlossen wurden.

Aussagen über gesetzliche, rechtliche und steuerliche Vorschriften und deren Auswirkungen haben nur für die Bundesrepublik

Deutschland Gültigkeit.

Die d.velop AG behält sich vor, in ihrer Software vorhandene Komponenten von Drittanbietern durch funktionsadäquate Komponenten

anderer Hersteller zu ersetzen. Die d.velop AG behält sich in Ausübung Ihrer jeweils gültigen Releasepolitik vor, Produktfeatures und

einzelne Softwareprodukte nicht mehr durch Softwarepflege- und Supportleistungen zu unterstützen. Näheres dazu finden Sie im

Supportlebenszyklus des d.velop-Service-Portals unter https://portal.d-velop.de.

Die Verwendung der Texte, Bilder, Grafiken sowie deren Arrangements, auch auszugsweise, sind ohne vorherige Zustimmung der d.velop

AG nicht erlaubt.

Alle verwendeten Hard- und Softwarenamen sind Handelsnamen und/oder Warenzeichen der jeweiligen Hersteller/Inhaber, die diese zur

Verfügung gestellt haben.

Sofern Teile oder einzelne Formulierungen dieser Dokumentation der geltenden Rechtslage nicht, nicht mehr oder nicht vollständig

entsprechen sollen, bleiben die übrigen Teile der Dokumentation in ihrem Inhalt und ihrer Gültigkeit davon unberührt.

In der Dokumentation können Sie über Links zu externen Internetseiten gelangen, die nicht von uns betrieben werden. Derartige Links

werden von uns entweder eindeutig gekennzeichnet oder sind durch einen Wechsel in der Adresszeile Ihres Browsers erkennbar. Für die

Inhalte dieser externen Internetseiten sind wir nicht verantwortlich.

Kontakt

d.velop AG

Schildarpstraße 6-8

48712 Gescher, Deutschland

Fon +49 2542 9307-0

d-velop.de oder info@d-velop.de

Vertreten durch den Vorstand: Christoph Pliete (Vorsitzender), Mario Dönnebrink

Vorsitzender des Aufsichtsrates: Dr. Helmut Bäumer

Handelsregister beim Amtsgericht Coesfeld, Nr. HRB 4903

Umsatzsteueridentifikationsnummer: DE 813062165

Bei Fragen zu dieser Dokumentation oder zur Software wenden Sie sich bitte an uns.

Fon +49 2542 9307-6000
support@d-velop.de

© d.velop AG. Alle Rechte vorbehalten.

https://portal.d-velop.de
https://www.d-velop.de/
mailto:info@d-velop.de
mailto:support@d-velop.de

d.3 hook & server scripting api (groovy)

2

Kontakt

d.velop AG

Schildarpstraße 6-8

48712 Gescher, Deutschland

Fon +49 2542 9307-0

d-velop.de

info@d-velop.de

Vertreten durch den Vorstand: Christoph Pliete (Vorsitzender), Mario Dönnebrink

Vorsitzender des Aufsichtsrates: Dr. Helmut Bäumer

Handelsregister beim Amtsgericht Coesfeld, Nr. HRB 4903

Umsatzsteueridentifikationsnummer: DE 813062165

Bei Fragen zu dieser Dokumentation oder zur Software wenden Sie sich bitte an uns.

Fon +49 2542 9307-6000

support@d-velop.de

Alle Rechte vorbehalten. Irrtümer vorbehalten.

Dieses Dokument wurde zuletzt am 12.02.2019 überarbeitet und bezieht sich auf d.3 server scripting api

(groovy) ab Version 8.1.0.

Name des Dokuments: d3serverscriptingapigroovy.pdf (Buildnummer: 20190212)

http://www.d-velop.de/
mailto:info@d-velop.de
mailto:support@d-velop.de

d.3 hook & server scripting api (groovy)

3

2 Einleitung

2.1 Über diese Dokumentation
Dies ist eine Dokumentation zum Groovy Skripting mit d.3 server ab Version 8.1.0.

Diese Dokumentation enthält Informationen, wie d.3-Hook-Funktionen und Skripte mit Groovy entwickelt

werden können und welche Schnittstellen und Funktionen d.3 server dafür bereitstellt.

Diese Dokumentation steht Entwicklungspartnern der d.velop AG im Service Portal online bereit. Die

Weitergabe dieser Dokumentation oder von Teilen daraus ist nicht gestattet. Bei Anfragen im Rahmen der

Entwicklungspartnerschaft gilt stets nur die Onlinedokumentation.

Bitte beachten Sie, dass Ihre Software über diese Schnittstelle auch Zugriff auf die von Ihren Kunden im

d.3ecm abgelegten und konfigurierten Daten erhält und Eingriff in die Abläufe im d.3ecm-System nimmt.

Gehen Sie daher bitte sorgfältig vor und achten Sie darauf, dass Ihre Anwendung Teil eines bestehenden

Zusammenspiels unterschiedlicher Anwendungen ist. Die unsachgemäße Verwendung dieser Schnittstelle

kann veränderte Programmabläufe und Datenverlust zur Folge haben.

Die Software-Entwicklung mit dieser Programmierschnittstelle ist Individualentwicklung. Der von Ihnen

erzeugte Programmcode fällt nicht unter die Pflege- und Supportbedingungen der Produkte der d.velop

AG. Unser Support unterstützt Sie gerne, Ihre Anfragen sind jedoch kostenpflichtig, sofern sich die

Anfrage nicht auf einen Fehler in unseren Produkten zurückführen lässt.

Alle Fragen zu den Voraussetzungen und zur Software-Entwicklung mit d.3ecm beantwortet Ihnen gerne

das Technology Partner Management der d.velop AG.

2.2 Voraussetzungen
Voraussetzung für die Nutzung sämtlicher Java/ Groovy-Funktionalitäten ist Aktivierung des Java/ Groovy-

Supports in d.3 config.

Zu diesem Zweck bringt d.3 server die Java Laufzeitumgebung von Sun/Oracle in der Version 8 mit, deren

Startmodul im gleichen Abschnitt voreingestellt ist.

2.3 Groovy
Groovy ist eine populäre, dynamische Skriptsprache für die Java Virtual Maschine.

Hinweis

Der Java/ Groovy-Support ist in d.3 Server Version 8.0.x im Standard aktiviert.

Weitere Informationen entnehmen Sie der Dokumentation zu d.3 admin.

d.3 hook & server scripting api (groovy)

4

Durch die enge Integration mit Java steht die ganze Java-Welt mit vielen umfangreichen Bibliotheken zur

Verfügung.

Groovy besitzt einige Fähigkeiten, die in Java nicht vorhanden sind: Native Syntax für Maps, Listen und

Reguläre Ausdrücke, ein einfaches Templatesystem, mit dem HTML- und SQL-Code erzeugt werden kann,

eine XQuery-ähnliche Syntax zum Ablaufen von Objektbäumen, Operatorüberladung und eine native

Darstellung für BigDecimal und BigInteger.

Groovy wird nicht wie andere Skriptsprachen über einen interpretierten Abstract Syntax Tree ausgeführt,

sondern vor dem Ablauf eines Skripts direkt in Java-Bytecode übersetzt. Syntaktisch ist Groovy viel weiter

von Java entfernt als BeanShell, dafür aber viel näher zu Ruby und Python.

Mehr Informationen finden Sie auf der offiziellen Groovy Website http://www.groovy-lang.org/. Dort gibt

es Tutorials und eine Dokumentation für Anfänger, wie auch für fortgeschrittene Benutzer der Sprache.

http://www.groovy-lang.org/

d.3 hook & server scripting api (groovy)

5

3 Entwicklungsumgebung
Da es sich bei Groovy Code um schlichte Textdateien handelt, können diese jederzeit mit einem einfachen

Texteditor bearbeitet werden.

Zur effektiven Hook-Entwicklung empfiehlt sich jedoch die Benutzung einer Entwicklungsumgebung wie

Eclipse, welche den Benutzer durch Features wie automatische Code-Vervollständigung unterstützen.

Die Java-Klassen der d.3-Server-Schnittstelle und Groovy-Unterstützung sowie der Groovy-Interpreter

selbst befinden sich im Java Archive groovyhook.jar im d.3 server-Programmverzeichnis (Standard: C:

\d3\d3server.prg).

In Eclipse kann dieses in den Project Properties unter Java Build Path als External JAR eingebunden

werden.

In dem Zusammenhang sollte auch gleich ein Groovy-PlugIn für Ecplise installiert werden, um direkt die

bestmögliche Unterstützung für Syntax Highlighting und Kommandoergänzung nutzen zu können.

Hinweis

Bei der Entwicklung und dem Test von Groovy Programmcode sollte der d.3 config-Schalter

Neuladen von Groovy-Hookdateien bei Änderung aktivieren (RELOAD_ON_CHANGE) aktiviert

werden.

Jedes Speichern von Groovy-Hookdateien führt dann dazu, dass diese von den Server Prozessen

automatisch neugeladen werden und die Code-Änderungen sofort aktiv sind.

Wichtig

Das Aktivieren der "Neuladen-Option" sollte aus Sicherheitsgründen NICHT im Produktivsystem

vorgenommen werden. Bei Änderungen an den Groovy-Skripten würden diese sofort produktiv

aktiv!

d.3 hook & server scripting api (groovy)

6

1.

2.

3.

4.

1.

2.

3.

4.

5.

3.1 Eclipse als Entwicklungsumgebung
Einrichtung von Eclipse als Entwicklungsumgebung für die Hook-Entwicklung

Laden und installieren Sie ein Java Development Kit (JDK) für Java.

Laden Sie Eclipse IDE for Java Developers von www.eclipse.orgin herunter und entpacken Sie

diese.

Starten Sie die entpackte eclipse.exe.

Wählen Sie ein geeignetes Verzeichnis für ihren Workspace. Der Workspace ist ein Verzeichnis, in

dem Eclipse ihre Projekte verwaltet. Geben Sie hier KEIN Verzeichnis vom d.3-Server an, sondern in

Ihren eigenen Dateien.

Nach dem Start von Eclipse muss noch das Groovy-Plugin für Eclipse installiert werden.

Unter Help wählen Sie Install New Software....

Bestimmen Sie unter https://github.com/groovy/groovy-eclipse/wiki die für Ihre Eclipse-Version

passende Update Site. Eine Update Site ist eine Webadresse, über die Eclipse auf automatisch

Software installieren kann.

Unter Work with tragen Sie diese Update Site ein und bestätigen.

Aktivieren Sie das Feature Groovy-Eclipse (Required).

Führen Sie die Installation durch.

Ihre Eclipse-Installation ist jetzt bereit zur Programmierung von d.3-Hooks mit Groovy.

Wichtig

Oracle hat seine Lizenzbedingungen bezüglich seiner Java Distribution überarbeitet, ab

Februar diesen Jahres (2019) nicht mehr kostenlos nutzbar. Dies gilt für JDK/JRE-Updates

die nach Januar diesen Jahres bei Oracle bezogen wurden.

Aus diesem Grund werden alle betroffenen Produkte künftig mit dem OpenJDK (https://

openjdk.java.net/) ausgeliefert und bis dahin in Hotfixen maximal "Oracle Java 8 Update

201" verwendet. Bezüglich dieser Lizenz ist jedoch ab jetzt zwingend darauf zu achten, dass

in der von uns ausgelieferten Distribution (jeweils der "jre"-Unterordner) keine

Anpassungen unsererseits oder durch Kunden vorgenommen werden. Unsere Kunden

können bestehende Installationen unserer Software weiterhin betreiben und werden beim

nächsten Update (bis auf einen Hinweis in den Readme's) voraussichtlich nichts von diesem

Wechsel mitbekommen.

http://www.eclipse.org/
https://github.com/groovy/groovy-eclipse/wiki
https://openjdk.java.net/
https://openjdk.java.net/

d.3 hook & server scripting api (groovy)

7

Hinweis

Nach dem ersten Start von Eclipse in einem neu erstellten Workspace müssen Sie evtl. von der

Willkommensseite zur Standardansicht wechseln, indem Sie die Schaltfläche Workbench in der

oberen rechten Ecke anwählen.

Falls das Zielsystem keinen Internetzugang zulässt

Das oben beschriebene Vorgehen kann auch auf einem separaten Rechner durchgeführt werden,

um die Eclipse-Umgebung einmal zusammenzustellen.

Sobald alles fertig ist, kann der Eclipse-Ordner einfach auf die Zielmaschine kopiert werden, es

muss nicht explizit installiert werden.

d.3 hook & server scripting api (groovy)

8

1.

2.

3.

3.2 Erstellen von Hook-Projekten
Um Hooks zu programmieren, erstellen Sie ein neues Projekt: File > New > Projekt.

Wählen Sie Groovy Projekt und vergeben Sie auf der nächsten Seite einen sprechenden Namen.

Auf der Seite Build Settings fügen Sie ein neues Quelltext-Verzeichnis hinzu, indem Sie auf das

Projekt rechtsklicken und Link Source auswählen.

In dem sich öffnenden Fenster geben Sie als Linked folder location das in d.3 admin definierte

Verzeichnis für Ihre Groovy-Hooks an (siehe Groovy-Hook-Verzeichnisse für kundenspezifische

Programmanpassungen).

d.3 hook & server scripting api (groovy)

9

4. Als Folder name wählen Sie etwas Sprechendes wie z.B. "Hooks" und bestätigen Sie mit Finish.

d.3 hook & server scripting api (groovy)

10

5.

6.

7.

8.

Erstellen Sie das Projekt mit Finish.

Sie können den Ordner src in Ihrem soeben erstellten Projekt nun löschen.

Suchen Sie im Installationsverzeichnis Ihres d.3-Servers (Standard: C:\d3\d3server.prg) die

Datei groovyhook.jar und kopieren Sie diese in Ihr Eclipse-Projekt.

Fügen Sie die groovyhook.jar zum Build Path hinzu, indem Sie darauf rechtsklicken und aus Menü

Build Path > Add to Build Path wählen. Wenn sich die Eclipse sowie d.3 server-Installation auf dem

gleichen Rechner befinden, kann die groovyhook.jar auch direkt als External JAR eingebunden

werden, ohne diese kopieren zu müssen.

Wichtig

Wenn die für das Groovy-Projekt automatisch in den Java Build Path aufgenommene

Version der Groovy Libraries neuer ist, als die in der groovyhook.jar enthaltene, dann

meldet Eclipse einen Versionskonflikt. In diesem Fall müssen im Tab Libraries die Einträge

Groovy DSL Support und Groovy Libraries aus dem Java Build Path entfernt werden.

d.3 hook & server scripting api (groovy)

11

9.

10.

Erstellen Sie neue Hook-Klassen, indem Sie im Kontextmenü des Ordners Hooks unter New | Other

den Typ Groovy Class auswählen.

In dem Assistenten vergeben Sie einen sprechenden Namen für Ihren Hook und bestätigen mit

Finish.

d.3 hook & server scripting api (groovy)

12

Sie können nur Ihre Hook-Funktionen implementieren.

Sollten Sie in d.3 admin konfiguriert haben, dass bei Änderungen an Hooks diese automatisch neu geladen

werden, müssen Sie in Eclipse nur speichern, um Änderungen zu testen. Nur wenn Sie das automatische

Neuladen deaktiviert haben, müssen Sie Ihre Repositoryprozesse neustarten, um Änderungen zu

übernehmen.

d.3 hook & server scripting api (groovy)

13

1.

2.

3.

4.

5.

3.3 IntelliJ IDEA als Entwicklungsumgebung
Wenn statt eclipse die IntelliJ Idea genutzt werden soll, ist dies möglich. Hierzu sind ein paar Schritte

notwendig.

Einrichtung von IntelliJ als Entwicklungsumgebung für die Hook-Entwicklung

Laden und installieren Sie ein Java Development Kit (JDK) für Java.

Laden Sie IntelliJ IDEA© herunter (die kostenfreie Community Edition reicht hier aus) und

installieren Sie diese: https://www.jetbrains.com/idea/download/#section=windows

Laden Sie danach die Groovy-Bibliothek herunter und installieren diese: http://groovy-lang.org/

download.html

Starten Sie danach IntelliJ.

Wählen Sie ein geeignetes Verzeichnis für ihr Projekt.

Wichtig

Oracle hat seine Lizenzbedingungen bezüglich seiner Java Distribution überarbeitet, ab

Februar diesen Jahres (2019) nicht mehr kostenlos nutzbar. Dies gilt für JDK/JRE-Updates

die nach Januar diesen Jahres bei Oracle bezogen wurden.

Aus diesem Grund werden alle betroffenen Produkte künftig mit dem OpenJDK (https://

openjdk.java.net/) ausgeliefert und bis dahin in Hotfixen maximal Oracle Java 8 Update 201

verwendet. Bezüglich dieser Lizenz ist jedoch ab jetzt zwingend darauf zu achten, dass in

der von uns ausgelieferten Distribution (jeweils der jre-Unterordner) keine Anpassungen

unsererseits oder durch Kunden vorgenommen werden. Unsere Kunden können bestehende

Installationen unserer Software weiterhin betreiben und werden beim nächsten Update (bis

auf einen Hinweis in den Readme's) voraussichtlich nichts von diesem Wechsel

mitbekommen.

https://www.jetbrains.com/idea/download/#section=windows
http://groovy-lang.org/download.html
http://groovy-lang.org/download.html
https://openjdk.java.net/
https://openjdk.java.net/

d.3 hook & server scripting api (groovy)

14

6.

1.

2.

Markieren des Verzeichnis als Sources Root.

Bekanntgeben der Groovy-API von d.3

Danach müssen Sie noch die Groovy-API Ihrem Projekt bekannt geben.

Öffnen Sie hierzu File > Project Structure.

Im neuen Fenster müssen Sie dann unter Libraries die groovyhook.jar aus dem

Programmverzeichnis von d.3 server hinzufügen.

Klicken Sie hierzu auf das +-Zeichen und wählen Java.

d.3 hook & server scripting api (groovy)

15

3.

4.

5.

Wählen Sie schließlich die groovyhook.jar aus dem Programmverzeichnis von d.3 server aus.

Es erscheint nun eine Meldung, dass die Bibliothek zu Ihrem Projekt hinzugefügt wird. Bestätigen

Sie diese Meldung mit OK.

Die Bibliothek wird nun angezeigt. Damit die Einstellung gespeichert wird, wählen Sie Apply oder

OK.

Nun steht Ihnen die Groovy-API von d.3 zur Verfügung und Sie können Groovy-Hooks mit Hilfe der IntelliJ-

Entwicklungsumgebung entwickeln.

Weitere Informationen zu IntelliJ IDEA

Eine ausführliche Dokumentation, sowie Tutorials finden sich beim Hersteller JetBrains auf der

Homepage: https://www.jetbrains.com/idea/documentation/.

https://www.jetbrains.com/idea/documentation/

d.3 hook & server scripting api (groovy)

16

•

•

•

•

•

4 Groovy Hook-Typen
Was ist ein Hook?

Mittels sogenannter Hooks kann in unserem System an vielen definierten Schnittstellen, sogenannten

Einsprung- bzw. Eintrittspunkten, eigene Funktionen mittels Groovy-Skript hinterlegt werden. Damit kann

auf User-Interaktionen mittels Skripten reagiert und individuelle Anpassungen im System hinterlegt

werden.

Unterschiedliche Typen der Hook-Schnittstellen

Es stehen unterschiedliche Integrations-Typen zur Auswahl:

Eintrittspunkte sind Event-gesteuerte Skript-Schnittstellen

Validierungshooks zur erweiterten Validierung von Werten

Bereitstellung von dynamischen Wertemengen

Erweiterte Dokumentklassen

[Aktenplan] - aktuell leider nicht in Groovy unterstützt.

4.1 d.3-Eintrittspunkte
Allgemein

Die Eintrittspunkte werden durch eine User-Aktion getriggert und werden dann, wie die Perlen auf einer

Kette, nach einander abgearbeitet. Wird dabei eine Hook-Funktion innerhalb dieser Kette mit einem Wert

ungleich 0 verlassen, wird damit die Kette unterbrochen. Wird zum Beispiel während des manuellen

Imports einer Rechnung festgestellt, dass die Kunden-Nr. einen falschen Wert enthält, kann damit die

Ablage der Rechnung im System verhindert werden.

d.3 hook & server scripting api (groovy)

17

Alle verfügbaren Eintrittspunkte für Hook-Funktionen im d.3 werden in den folgenden, untergeordneten

Seiten im Einzelnen beschrieben.

Für die beschriebenen Parameter einer Hook-Funktion werden die im Kontext des Aufrufs verfügbaren d.3

Archiv-Objekte an die Groovy-Hook-Funktionen übergeben.

Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-Funktion immer die d.3 Schnittstelle

übergeben.

import com.dvelop.d3.server.Entrypoint
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;

class MyHooks{
 @Entrypoint(entrypoint="hook_insert_entry_10")
 public int checkIncommingDocuments(D3Interface d3, User user, DocumentType docType, Document doc){
 println "groovy hook insert_entry_10";
 doc.field[1] = "<New value from hook function>";
 return 0;
 }// end of checkIncommingDocuments
} // end of MyHooks

d.3 hook & server scripting api (groovy)

18

// ...
 @Entrypoint(entrypoint="hook_insert_entry_10", order = 2)
 def checkIncommingDocuments_2(D3Interface d3, User user, DocumentType docType, Document doc){
 println "Zweite Methode für Eintrittspunkt hook_insert_entry_10";
 doc.field[2] = "<New value from second hook function>";
 return 0;
 }// end of checkIncommingDocuments
}/ end of MyHooks

// ...
 @Entrypoint(entrypoint="hook_insert_entry_10", order=2)
 @Condition(doctype= ["DA1"])
 def insertEntry10_2(D3Interface d3, User user, DocumentType docType, Document doc)
 {
// ...

Beispiel - Angabe mehrerer Dokumentart-IDs

Hinweis

Es können auch mehrere Methoden pro Eintrittspunkt registriert werden.

Ist dabei die Reihenfolge des Aufrufs relevant, kann diese mit dem numerischen Attribut order in

der Annotation festgelegt werden.

Der Defaultwert für Attribut order ist dabei "1".

Vor dem Aufruf aller Methoden einer Klasse für denselben Eintrittspunkt werden diese nach

Attribut order aufsteigend sortiert.

Soll also eine Methode nach einer anderen für den gleichen Eintrittspunkt aufgerufen werden,

muss deren order Wert größer sein.

Hinweis

Ein zweiter Annotations-Typ ist @Condition. Mit diesem können Bedingungen für den Aufruf der

damit annotierten Methode definiert werden.

Per Eigenschaft doctype können IDs von d.3-Dokumentarten angegeben werden.

Besitzt dieser Eintrittspunkt einen Parameter vom Typ Document oder ein DocumentType, werden

die enthaltenen Dokumentart-IDs mit der Bedingung verglichen.

Bei mindestens einer Übereinstimmung wird die Methode aufgerufen.

d.3 hook & server scripting api (groovy)

19

// ...
 @Condition(doctype=["DA1", "DA2", "DA3"])
 def insertEntry10_2(D3Interface d3, User user, DocumentType docType, Document doc)
 {
// ...

Beispiel - mehrere IDs per konstanter Variablen

// ...
 static final String PHOTO = "DFOTO"; // Document type for photos
 static final String CURRICULUM_VITAE = "DLELA"; // Document type for curriculum vitae
 static final String PERSONAL_MASTAER_DATA = "DPSB"; // Document type for personnel master data
 static final String CERTIFICATE = "DZEUG"; // Document type for certificates
 @Condition(doctype=[PHOTO, CURRICULUM_VITAE, PERSONAL_MASTAER_DATA, CERTIFICATE])
// ...

d.3 hook & server scripting api (groovy)

20

4.1.1 Abhängige Dateien

4.1.1.1 hook_dep_doc_entry_10

int hook_dep_doc_entry_10(D3Interface d3, Document doc, String status, Integer fileId, UserOrUserGroup
editor, String depExt, Integer transfer)

Aufrufzeitpunkt:

Vor dem Eintragen einer abhängigen Datei in die Datenbank

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, zu dem die abhängige Datei gehört

status aktueller Status des Dokuments ("Be", "Pr", "Fr", "Ar")

fileId Version des Dokuments

editor Bearbeiter oder Prüfer-Gruppe des Dokuments bei Status
Bearbeitung bzw. Prüfung

depExt Dateierweiterung der abhängigen Datei

transfer 1: Aufruf während eines Statustransfers

d.3 hook & server scripting api (groovy)

21

1.

2.

3.

4.

5.

6.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_dep_doc_entry_10")
 // (4)
 public int doSomething (D3Interface d3, Document doc, String status, Integer fileId, UserOrUserGroup editor,
String depExt, Integer Transfer){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

22

4.1.1.2 hook_dep_doc_exit_10

int hook_dep_doc_exit_10(D3Interface d3, Document doc, String status, Integer fileId, UserOrUserGroup editor,
String depExt, Integer transfer)

Aufrufzeitpunkt:

Nach Eintrag der abhängigen Datei in die Datenbank.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, zu dem die abhängige Datei abgelegt wurde

status aktueller Status des Dokuments

fileID Version des Dokuments

editor Bearbeiter oder Prüfer-Gruppe des Dokuments bei Status
Bearbeitung bzw. Prüfung

depExt Dateierweiterung der abhängigen Datei

transfer 1: Aufruf während eines Statustransfers

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_dep_doc_exit_10")
 // (4)
 public int doSomething(D3Interface d3, Document doc, String status, Integer fileId, UserOrUserGroup editor,
String depExt, Integer Transfer){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

d.3 hook & server scripting api (groovy)

23

1.

2.

3.

4.

5.

6.

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.2 Aktualisieren der Eigenschaftswerte (UpdateAttributes)

4.1.2.1 hook_upd_attrib_entry_20

int hook_upd_attrib_entry_20(D3Interface d3, Document doc, User user, DocumentType docType,
DocumentType docTypeNew)

Verfügbare Felder:

Alle beim API-Call übergebenen Felder.

Änderbar sind jedoch nur die dok_dat_-Felder und das Feld text.

Aufrufzeitpunkt:

Es wurden lediglich die neuen Attribute empfangen, jedoch noch nicht auf Plausibilität geprüft.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc Dokument-Objekt, mit den zu aktualisierenden Eigenschaftswerten.
Diese können in dieser Hook-Funktion geändert werden.

user der ausführende Benutzer

docType Dokumentart vor der Eigenschaftsaktualisierung

docTypeNew Dokumentart nach der Eigenschaftsaktualisierung

d.3 hook & server scripting api (groovy)

24

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_upd_attrib_entry_20")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType, DocumentType
docTypeNew){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

Hinweis

Die Werte docType und docTypeNew unterscheiden sich nur, wenn tatsächlich ein

Dokumentartwechsel durchgeführt wurde.

d.3 hook & server scripting api (groovy)

25

4.1.2.2 hook_upd_attrib_exit_10

int hook_upd_attrib_exit_10(D3Interface d3, Document doc, Integer errorCode, User user, DocumentType
docType, DocumentType docTypeOld)

Aufrufzeitpunkt:

Direkt vor Beendigung der DB-Transaktion.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc Dokument-Objekt mit den zu aktualisierenden
Eigenschaftswerten
Diese können in dieser Hook-Funktion noch geändert werden.

errorCode 0: Aktualisierung erfolgreich
<> 0: Fehlernummer; i. a. vom DB-Server geliefert

user der ausführende Benutzer

docType Dokumentart nach der Eigenschaftsaktualisierung

docTypeOld Dokumentart vor der Eigenschaftsaktualisierung

Hinweis

Diese Hook-Funktion wird nur ausgeführt, wenn zuvor kein Fehler aufgetreten ist. Liefert diese

Funktion einen Wert ungleich 0, wird die Aktualisierung abgebrochen und die Änderungen

rückgängig gemacht.

Hinweis

Die Werte docType und docTypeOld unterscheiden sich nur, wenn tatsächlich ein

Dokumentartwechsel durchgeführt wurde.

d.3 hook & server scripting api (groovy)

26

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_upd_attrib_exit_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, Integer errorCode, User user, DocumentType docType,
DocumentType docTypeOld){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

27

4.1.2.3 hook_upd_attrib_exit_20

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc Dokument-Objekt mit den aktualisierten Eigenschaftswerten

errorCode 0: Aktualisierung war erfolgreich
<> 0: Fehlernummer; i. a. vom DB-Server geliefert

user der ausführende Benutzer

docType Dokumentart nach der Eigenschaftsaktualisierung

docTypeOld Dokumentart vor der Eigenschaftsaktualisierung

int hook_upd_attrib_exit_20(D3Interface d3, Document doc, Integer errorCode, User user, DocumentType
docType, DocumentType docTypeOld)

Aufrufzeitpunkt:

Direkt nach Beendigung der DB-Transaktion.

Hinweis

Diese Hook-Funktion wird immer ausgeführt, auch wenn zuvor ein Fehler aufgetreten ist. Es wird

daher empfohlen, den Parameter errorCode auszuwerten.

Hinweis

 Die Werte docType und docTypeOld unterscheiden sich nur, wenn tatsächlich ein

Dokumentartwechsel durchgeführt wurde.

d.3 hook & server scripting api (groovy)

28

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_upd_attrib_exit_20")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, Integer errorCode, User user, DocumentType docType,
DocumentType docTypeOld){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

29

4.1.3 Dokumentanlage (ImportDocument)

4.1.3.1 hook_hostimp_entry_10

int hook_hostimp_entry_10(D3Interface d3, String importDir, String fileName, Document doc, DocumentType
docType, String newImport)

Aufrufzeitpunkt:

Wird nur beim Hostimport aufgerufen. Direkt nach dem Einlesen der default.ini und der JPL-

Attributdatei.

Die Unicode-Konvertierung wurde an dieser Stelle noch nicht durchgeführt. Auch die Werte der

übersetzbaren Wertemengen wurden noch nicht konvertiert.

Hier ist eine Änderung der übergebenen Eigenschaftswerte möglich.

Parameter Beschreibung

d3 die d.3-Schnittstelle

importDir Verzeichnis, aus dem die Datei importiert wird

fileName Dateiname der zu importierenden Datei

doc das zu importierende Dokument-Objekt

docType Dokumentart des zu importierenden Dokuments

newImport "1": import eines neuen Dokuments
"0": Import einer neuen Dateiversion zu einem existierenden
Dokument

Wichtig

Dieser Einsprungpunkt ist aktuell nicht mit der Groovy-Hookschnittstelle kompatibel und kann

deshalb noch nicht genutzt werden.

Bis zur Herstellung der Kompatibilität muss auf die JPL-Variante des Einsprungpunkts

zurückgegriffen werden.

d.3 hook & server scripting api (groovy)

30

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_hostimp_entry_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, String importDir, String fileName, Document doc, DocumentType
docType, String newImport){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.3.2 hook_insert_entry_10

hook_insert_entry_10 (D3Interface d3, User user, DocumentType docType, Document doc)

d.3 hook & server scripting api (groovy)

31

Aufrufzeitpunkt:

Vor dem Import. Es wurde lediglich getestet, ob die Verbindung zur DB in Ordnung ist. Hier ist eine

Änderung der übergebenen Eigenschaftswerte möglich.

Bei der Datenvalidierung für einen anschließenden Dokumentenimport (API ValidateAttributes

mit Parameter "function" = "Insert")

Die Dokumenteigenschaften sind über das Dokumentobjekt zugreifbar. Die Werte der erweiterten

Eigenschaften können im Hook geändert werden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausführende Benutzer

docType Dokumentart des neu zu importierenden Dokuments

doc das neue Dokument-Objekt

Hinweis

Szenario:

Wird ein Dokument im d.3-System abgelegt, soll im d.3 Log-File einfach nur eine Fehlermeldung

"Hallo Welt" angezeigt werden.

d.3 hook & server scripting api (groovy)

32

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_insert_entry_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, User user, DocumentType docType, Document doc) {
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.3.3 hook_insert_entry_20

hook_insert_entry_20 (D3Interface d3, Document doc, DocumentType docType, User user)

d.3 hook & server scripting api (groovy)

33

1.

2.

Aufrufzeitpunkt:

Vor dem Import. Die Nutzdatei wurde bereits in das Zielverzeichnis übertragen.

Die SQL-Kommandos für die Speicherung der Dokument-Metadaten wurden generiert.

Die übergebenen Dokumenteigenschaften können nicht mehr geändert werden.

Die Eigenschaftswerte sind noch nicht auf Gültigkeit (Wertebereich, reg. Expression, Min.-Max.-Bereich, ...)

geprüft worden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das zu importierende Dokument

docType Dokumentart des zu importierenden Dokuments

user der ausführende Benutzer

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_insert_entry_20")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, DocumentType docType, User user) {
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

d.3 hook & server scripting api (groovy)

34

3.

4.

5.

6.

7.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.3.4 hook_insert_exit_10

int hook_insert_exit_10 (D3Interface d3, Document doc, String fileDestination, Integer importOk, User user,
DocumentType docType)

Aufrufzeitpunkt:

Nach dem Import. Die Datenbank-Transaktion wurde noch nicht geschlossen. Somit kann man hier noch

eine letzte Zurücknahme erzwingen und damit den Import rückgängig machen.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das neue Dokument

fileDestination Pfad und Name der Zieldatei (Angabe, wohin die Zieldatei
geschrieben wurde)

importOk 1: bisher kein Fehler ausgetreten
0: Es trat ein Fehler beim Importieren des Dokuments auf

user der ausführende Benutzer

docType Dokumentart des neuen Dokuments

d.3 hook & server scripting api (groovy)

35

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_insert_exit_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, String fileDestination, Integer importOk, User user,
DocumentType docType) {
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

36

4.1.3.5 hook_insert_exit_20

int hook_insert_exit_20(D3Interface d3, Document doc, String fileDestination, Integer importOk, User user,
DocumentType docType)

Aufrufzeitpunkt:

Nach dem Import. Die Datenbank-Transaktion wurde geschlossen (COMMIT oder ROLLBACK). Somit kann ein

erfolgreicher Import nicht mehr rückgängig gemacht werden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das neue Dokument

fileDestination Pfad und Name der Zieldatei (Angabe, wohin die Zieldatei
geschrieben wurde)

importOk 1: bisher kein Fehler ausgetreten
0: Es trat ein Fehler beim Importieren des Dokuments auf

user der ausführende Benutzer

docType Dokumentart des neuen Dokuments

d.3 hook & server scripting api (groovy)

37

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_insert_exit_20")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, String fileDestination, Integer importOk, User user,
DocumentType docType){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

38

4.1.3.6 hook_insert_exit_30

int hook_insert_exit_30 (D3Interface d3, Document doc, String fileDestination, Integer importOk, User user,
DocumentType docType)

Aufrufzeitpunkt:

Nach dem Import. Die Datenbank-Transaktion wurde bereits geschlossen.

4.1.4 Dokumente freigeben (ReleaseDocument)

4.1.4.1 hook_release_entry_10

int hook_release_entry_10(D3Interface d3, Document doc, User user, DocumentType docType, String unblock)

Aufrufzeitpunkt:

Direkt vor Start der Dokumentfreigabe. Es wurde ermittelt, dass der Benutzer das Recht hat, das

Dokument freizugeben.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das freizugebende Dokument

user der ausführende Benutzer

docType Dokument des freizugebenden Dokuments

unblock gleich "1", wenn das Dokument entsperrt wird
gleich "" sonst

Hinweis

Die Funktion kann genauso verwendet werden wie hook_insert_exit_20.

Hinweis

Falls diese Hook-Funktion einen Wert ungleich 0 liefert, wird die Freigabe abgebrochen.

d.3 hook & server scripting api (groovy)

39

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_release_entry_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType, String unblock){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

40

4.1.4.2 hook_release_exit_10

int hook_release_exit_10(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType docType,
String unblock)

Aufrufzeitpunkt:

Nach Durchführung der Freigabe, nach Beendigung der Datenbank-Transaktion.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das freigegebene Dokument

user der ausführende Benutzer

errorCode 0: Freigabe war erfolgreich
sonst: Fehlercode

docType Dokumentart des freigegebenen Dokuments

unblock gleich "1", wenn das Dokument entsperrt wird
ungleich "1" bei normalen Freigaben

d.3 hook & server scripting api (groovy)

41

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_release_exit_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType docType,
String unblock){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

42

4.1.5 Dokument prüfen (VerifyDocument)

4.1.5.1 hook_verify_entry_10

int hook_verify_entry_10(D3Interface d3, Document doc, Integer versionId, User user)

Aufrufzeitpunkt:

Direkt vor Start der Datenbank-Transaktion. Es wurde ermittelt, dass der Benutzer das Recht hat, das

Dokument zu prüfen.

Eingabeparameter:

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das zu prüfende Dokument

versionId Nummer der zu prüfenden Dokumentversion

user der ausführende Benutzer

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_verify_entry_10")
 // (4)
 public int doSomething(D3Interface d3, Document doc, Integer versionId, User user){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Hinweis

Falls diese Hook-Funktion einen Wert ungleich 0 liefert, wird die Prüfung abgebrochen.

d.3 hook & server scripting api (groovy)

43

1.

2.

3.

4.

5.

6.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.5.2 hook_verify_exit_10

int hook_verify_exit_10(D3Interface d3, Document doc, Integer versionId, User user, Integer errorCode)

Aufrufzeitpunkt:

Nach Durchführung der Prüfung. Nach Beendigung der Datenbanktransaktion.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das geprüfte Dokument

versionId Nummer der geprüften Dokumentversion

user der ausführende Benutzer

errorCode 0: Prüfung erfolgreich
sonst: Datenbank-Fehlernummer beim Eintrag der Prüfung in die
Datenbank

d.3 hook & server scripting api (groovy)

44

1.

2.

3.

4.

5.

6.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_verify_exit_10")
 // (4)
 public int doSomething(D3Interface d3, Document doc, Integer versionId, User user, Integer errorCode){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.6 Dokumentsuche (GetDocumentList/SearchDocument)

4.1.6.1 hook_search_entry_05

int hook_search_entry_05(D3Interface d3, User user, DocumentType docType, Document searchContext)

Aufrufzeitpunkt:

Vor dem Zugriff auf die Volltext-Engine über d.3 search. Hier kann über den searchContext auch der

Volltext-Suchbegriff noch geändert werden.

d.3 hook & server scripting api (groovy)

45

1.

2.

3.

4.

5.

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausführende Benutzer

docType falls angegeben, die Dokumentart der gesuchten Dokumente

searchContext die Suchbegriffe über ein Dokument-Objekt zugreifbar

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_search_entry_05")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, User user, DocumentType docType, Document searchContext){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

d.3 hook & server scripting api (groovy)

46

6.

7.

•

•

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.6.2 hook_search_entry_10

int hook_search_entry_10(D3Interface d3, User user, DocumentType docType, Document searchContext)

Aufrufzeitpunkt:

Vor der Suche nach Dokumenten: Die übergebenen Suchkriterien sind noch nicht auf Plausibilität

geprüft worden. Eine ggf. aktivierte Konvertierung der Suchkriterien nach Klein- bzw. Großschrift

wurde noch nicht durchgeführt.

Bei der Datenvalidierung für eine anschließende Suche (API ValidateAttributes mit Parameter

"function" = "Search").

Die Suchbegriffe wurden übernommen. Diese können im Hook über den 'searchContext' geändert werden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausführende Benutzer

docType falls angegeben, die Dokumentart der gesuchten Dokumente

searchContext die Suchbegriffe über ein Dokument-Objekt zugreifbar

d.3 hook & server scripting api (groovy)

47

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_search_entry_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, User user, DocumentType docType, Document searchContext){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

48

1.

2.

4.1.6.3 hook_search_entry_20

int hook_search_entry_20(D3Interface d3, User user, DocumentType docType)

Aufrufzeitpunkt:

Vor der Suche nach Dokumenten: Der SELECT-Befehl für die Suche nach den Dokumenten ist

entsprechend den Suchkriterien schon zusammengesetzt worden.

Eingabeparameter:

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausführende Benutzer

docType alles angegeben, die Dokumentart der gesuchten Dokumente

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_search_entry_20")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, User user, DocumentType docType){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

d.3 hook & server scripting api (groovy)

49

3.

4.

5.

6.

7.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.6.4 hook_search_exit_30

hook_search_exit_30(D3Interface d3, User user, Integer errorCode, Integer noResults, Integer noRefused,
DocumentType docType)

Aufrufzeitpunkt:

Ganz am Ende der Suche, direkt bevor die Ergebnisse an den Client geliefert werden

Parameter Beschreibung

d3 die d.3-Schnittstelle

user Benutzer, der die Suche ausführt

errorCode 0 bei Erfolg
ansonsten ein Fehlercode

noResults Anzahl der Treffer

noRefused Anzahl verweigerter Treffer

docType falls angegeben, die Dokumentart der gesuchten Dokumente

Rückgabewert:

wird ignoriert

d.3 hook & server scripting api (groovy)

50

1.

2.

3.

4.

5.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_search_exit_30")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, User user, Integer errorCode, Integer noResults, Integer noRefused,
DocumentType docType){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Hinweis

Über die Hook-Eigenschaft no_results_refused kann die Rückgabe der Anzahl der verweigerten

Treffer an den Aufrufer deaktiviert werden.

Diese kann in Kontexten genutzt werden, sofern Benutzer gar nicht sehen dürfen, dass es

überhaupt Treffer gibt.

Aufruf: d3.hook.setProperty("no_results_refused", "0")

d.3 hook & server scripting api (groovy)

51

6.

7.

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.7 Einspielen einer neuen Version (ImportNewVersionDocument)

4.1.7.1 hook_new_version_entry_10

int hook_new_version_entry_10(D3Interface d3, Document doc, String fileSource, String fileDestination, User
user, DocumentType docType)

Aufrufzeitpunkt:

Es wurde geprüft, ob das Dokument bereits in d.3 existiert. Die Dokumenteigenschaften können hier noch

geändert werden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc Dokument, zu dem eine neue Dateiversion eingespielt
werden soll

fileSource abgekündigt mit Version 8.0

fileDestination abgekündigt mit Version 8.0

user der ausführende Benutzer

docType Dokumentart der zu importierenden Dateiversion

Hinweis

Wird beim ValidateAttributes nextcall=ImportNewVersionDocument übergeben, wird die

Funktion auch aufgerufen.

Durch die Neustrukturierung der Dokumentablage mit d.3-Version 8 haben die Parameter

fileSource und fileDestination keinen sinnvollen Inhalt mehr.

Die Parameter sind weiterhin vorhanden, damit sich die Hook-Schnittstelle nicht ändert und

müssen somit weit entgegengenommen werden. Als Wert wird aber nur Leerstring übergeben.

d.3 hook & server scripting api (groovy)

52

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_new_version_entry_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, String fileSource, String fileDestination, User user,
DocumentType docType){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

53

4.1.7.2 hook_new_version_entry_20

int hook_new_version_entry_20(D3Interface d3, Document doc, String fileSource, String fileDestination, User
user, DocumentType docType)

Aufrufzeitpunkt:

Es wurde erfolgreich geprüft, ob die neue Dateiversion existiert. Diese wurde noch nicht eingespielt.

Die Datenbanktransaktion wurde noch nicht gestartet. Die Dokumenteigenschaften sind validiert worden

und können nicht mehr geändert werden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc Dokument, zu dem eine neue Dateiversion eingespielt
werden soll

fileSource abgekündigt mit Version 8.0

fileDestination abgekündigt mit Version 8.0

user der ausführende Benutzer

docType Dokumentart der zu importierenden Dateiversion

Hinweis

Durch die Neustrukturierung der Dokumentablage mit d.3-Version 8 haben die Parameter

fileSource und fileDestination keinen sinnvollen Inhalt mehr.

Die Parameter sind weiterhin vorhanden, damit sich die Hook-Schnittstelle nicht ändert und

müssen somit weit entgegengenommen werden. Als Wert wird aber nur Leerstring übergeben.

d.3 hook & server scripting api (groovy)

54

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_new_version_entry_20")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, String fileSource, String fileDestination, User user,
DocumentType docType){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

55

1.

2.

4.1.7.3 hook_new_version_entry_30

int hook_new_version_entry_30(D3Interface d3, Document doc, String fileSource, String fileDestination, User
user, DocumentType docType)

Aufrufzeitpunkt:

Wird sofort nach hook_new_version_entry_20 ausgeführt.

Alle Angaben analog zu hook_new_version_entry_20.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_new_version_entry_30")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, String fileSource, String fileDestination, User user,
DocumentType docType){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Hinweis

Durch die Neustrukturierung der Dokumentablage mit d.3-Version 8 haben die Parameter

fileSource und fileDestination keinen sinnvollen Inhalt mehr.

Die Parameter sind weiterhin vorhanden, damit sich die Hook-Schnittstelle nicht ändert und

müssen somit weit entgegengenommen werden. Als Wert wird aber nur Leerstring übergeben.

d.3 hook & server scripting api (groovy)

56

3.

4.

5.

6.

7.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.7.4 hook_new_version_exit_10

int hook_new_version_exit_10(D3Interface d3, Document doc, Integer errorCode, User user, DocumentType
docType)

Aufrufzeitpunkt:

Die Datenbanktransaktion wurde gestartet. Alle Eigenschaften, auch die Mehrfacheigenschaften (60er-

Felder) wurden aktualisiert.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc Dokument, zu dem eine neue Dateiversion importiert wurde

errorCode 1: Beim Aktualisieren der Eigenschaften ist ein Fehler aufgetreten
0: Aktualisieren der Kenndaten erfolgreich

user der ausführende Benutzer

docType Dokumentart der importierten Dateiversion

d.3 hook & server scripting api (groovy)

57

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_new_version_exit_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, Integer errorCode, User user, DocumentType docType)
{
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

58

4.1.7.5 hook_new_version_exit_20

int hook_new_version_exit_20(D3Interface d3, Document doc, String fileDestination, Integer importOk, User
user, DocumentType docType)

Aufrufzeitpunkt:

Auch die Mehrfacheigenschaften (60er-Felder) wurden aktualisiert. Die neue Dateiversion wurde, ggf.

zusammen mit zugehörigen, abhängigen Dateien, importiert.

Die Datenbanktransaktion wurde beendet (COMMIT oder ROLLBACK).

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc Dokument, zu dem eine neue Dateiversion importiert wurde

fileDestination abgekündigt mit Version 8.0

ImportOk 1: Einspielung der neuen Version erfolgreich
0: Einspielung der neuen Version mit Fehler abgebrochen

user der ausführende Benutzer

docType Dokumentart der importierten Dateiversion

Hinweis

Durch die Neustrukturierung der Dokumentablage mit d.3-Version 8 hat der Parameter

fileDestination keinen sinnvollen Inhalte mehr und ist deshalb abgekündigt.

d.3 hook & server scripting api (groovy)

59

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_new_version_exit_20")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, String fileDestination, Integer importOk, User user,
DocumentType docType){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

60

4.1.7.6 hook_new_version_exit_30

int hook_new_version_exit_30(D3Interface d3, Document doc, Integer importOk, Integer errorCode, User user,
DocumentType docType)

Aufrufzeitpunkt:

wie bei hook_new_version_exit_20

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc Dokument, zu dem eine neue Dateiversion importiert wurde

ImportOk 1: Einspielung der neuen Version erfolgreich
0: Einspielung der neuen Version mit Fehler abgebrochen

errorCode Im Fehlerfall (importOk=0): Fehlercode des zuvor aufgetretenen
Fehlers

user der ausführende Benutzer

docType Dokumentart der importierten Dateiversion

d.3 hook & server scripting api (groovy)

61

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_new_version_exit_30")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, Integer importOk, Integer errorCode, User user,
DocumentType docType){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

62

4.1.8 Erzeugen/ Bearbeiten von TIFF- oder PDF-Dokumenten

4.1.8.1 hook_rendition_entry_10

int hook_rendition_entry_10(D3Interface d3, Document doc, User user)

Aufrufzeitpunkt:

Vor dem Start der Abbildungserstellung, wenn diese über einen d.3-Benutzer aufgerufen wurde (über

d.3-API oder Server-API). Wird nicht aufgerufen bei automatischem Aufruf über hinterlegte Regeln.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, von dem ein TIFF- oder PDF-Abbild erstellt werden
soll

user der d.3-Benutzer, der die Erstellung angefordert hat

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_rendition_entry_10")
 // (4)
 public int doSomething(D3Interface d3, Document doc, User user){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Hinweis

Der Aufruf kann durch Returnwert ungleich 0 abgebrochen werden.

d.3 hook & server scripting api (groovy)

63

1.

2.

3.

4.

5.

6.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.8.2 hook_rendition_entry_20

int hook_rendition_entry_20(D3Interface d3, Document doc, DocumentType docType, String sourcePath, String
sourceFilename, String destFilename)

Aufrufzeitpunkt:

Direkt vor dem Senden des Erstellungsjobs an den d.ecs rendition service.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument von dem ein TIFF- oder PDF-Abbild erstellt
werden soll

docType Dokumentart dieses Dokuments

Hinweis

In dieser Hook-Funktion können über die Hook-Eigenschaftsfelder rendition_parameter_name

und rendition_parameter_value Render-Optionen an den Rendition Service übergeben werden.

Beispiel:

d3.hook.setProperty("rendition_parameter_name", 1, "PRINT_FORMAT")
d3.hook.setProperty("rendition_parameter_value", 1, "A2")

d.3 hook & server scripting api (groovy)

64

1.

2.

3.

4.

5.

Parameter Beschreibung

sourcePath Quellpfad der Stammdatei

sourceFilename Dateiname der Stammdatei

destFilename Dateiname der fertigen Abbilddatei

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_rendition_entry_20")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, User user, DocumentType docType, Document searchContext){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

d.3 hook & server scripting api (groovy)

65

6.

7.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

66

4.1.8.3 hook_rendition_exit_30

int hook_rendition_exit_30(D3Interface d3, Document doc, String destStatus, String tiffFilename, Integer
errorCode, String fileType)

Aufrufzeitpunkt:

Nach dem Abholen der fertigen TIFF-/PDF-Datei vom Rendition Server.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, von dem ein TIFF- oder PDF-Abbild erstellt
wurde

destStatus Zielstatus des Dokumentes ("B", "P", "F", "A")

tiffFilename Zielpfad + Dateiname der Abbild-Datei

errorCode 0 = ok
-1 = Fehler beim Abholen der Datei vom Rendition Service ->
siehe d.3-Logdatei

fileType Dateityp, der gerendert wurde ("P1", "T1", "TXT")

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_rendition_exit_30")
 // (4)
 public int doSomething(D3Interface d3, Document doc, String destStatus, String tiffFilename, Integer
errorCode, String fileType){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

d.3 hook & server scripting api (groovy)

67

1.

2.

3.

4.

5.

6.

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.9 Login

4.1.9.1 hook_val_passwd_entry_10

int hook_val_passwd_entry_10(D3Interface d3, User user, String appLanguage, String appVersion)

Aufrufzeitpunkt:

Hook-Funktion vor der Prüfung von Benutzername und Passwort durch API-Funktion

ValidatePasswordForUser.

Ein langer Benutzername ist bereits gegen den internen Namen getauscht worden.

Anmeldedaten können nicht verändert werden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

user anzumeldender Benutzer (d.3-Kurz- oder Langname; LDAP-
Benutzername)

appLanguage SprachID, die von der Anwendung übergeben wurde, z.B.
"049"=deutsch, "001"=englisch

appVersion Versionsstring, der von der Anwendung übergeben wurde

Zeichen 1..3 Modulkennung z.B. 200 für d.xplorer
Zeichen 4..6: Version des Moduls z.B. 800 für Version 8.0.0
Zeichen 7..8 Loglevel, z.B. 9 für DEBUG

Rückgabe:

d.3 hook & server scripting api (groovy)

68

1.

2.

3.

4.

5.

6.

Ein Wert != 0 führt zur Änderung des Rückgabewertes von API-Funktion ValidatePasswordForUser und

somit zum Abbruch des Login.

Der Rückgabewert des Hook wird von 9500 abgezogen, d.h. -1 => 9500-(-1) = 9501.

Diese Zahl wird an den Client zurückgegeben und ist somit in der msglib.usr zu hinterlegen.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_val_passwd_entry_10")
 // (4)
 public int doSomething(D3Interface d3, User user, String appLanguage, String appVersion){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

69

4.1.9.2 hook_val_passwd_exit_10

int hook_val_passwd_exit_10(D3Interface d3, int errorCode, User user, String appLanguage, String appVersion)

Aufrufzeitpunkt:

Test von Benutzername und Passwort gegen d.3-Benutzerstamm oder auch ggf. gegen einen Directory

Server (per LDAP/Kerberos) sind gelaufen.

Das Ergebnis steht fest und wird als Parameter "error" übergeben.

Eingabeparameter:

Parameter Beschreibung

d3 die d.3-Schnittstelle

errorCode Fehlercode der Benutzername/Passwort Prüfung; z.B. 0002 =
Benutzername/Passwort ungültig; 0 = Erfolg

user anzumeldender d.3-Benutzer

appLanguage Sprach-ID, die von der Anwendung übergeben wurde, z.B.
"049"=deutsch, "001"=englisch

appVersion Versionsstring, der von der Anwendung übergeben wurde

Rückgabe:

Ein Rückgabewert != 0 führt zum Abbruch (siehe hook_val_passwd_entry_10).

d.3 hook & server scripting api (groovy)

70

1.

2.

3.

4.

5.

6.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_val_passwd_exit_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, int errorCode, User user, String appLanguage, String appVersion){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.10 Löschen eines Dokuments (DeleteDocument)

4.1.10.1 hook_delete_entry_10

int hook_delete_entry_10(D3Interface d3, Document doc, User user, DocumentType docType)

Aufrufzeitpunkt:

d.3 hook & server scripting api (groovy)

71

•

•

Vor dem Löschen des Dokuments. Es wurde erfolgreich geprüft, ob der Benutzer das Dokument

löschen darf.

Der Löschvorgang kann hier noch abgebrochen werden durch Rückgabe eines Returncodes ungleich

0.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das zu löschenden Dokument

user der Benutzer, der das Dokument löschen möchte

docType Dokumentart des zu löschenden Dokuments

Privilegiertes Löschen:

Das Löschen von Dokumenten erfolgt per Default immer durch Verschieben in den internen Papierkorb.

Mit Hilfe des privilegierten Löschens kann eine Dokumentversion allerdings sofort vollständig und

unwiederbringlich aus dem System (Datenbank, Dokumentenbaum und in einigen Fällen auch vom

Sekundärspeichersystem) gelöscht werden. Hierfür muss eine separate Lizenz bei der d.velop AG

erworben und gegebenenfalls auch Beratung beauftragt werden. In diesem Einsprungpunkt kann das

privilegierte Löschen dann aktiviert werden durch setzen der Hook-Eigenschaft "DELETE_PRIVILEGED".

Eigenschaft Beschreibung

DELETE_PRIVILEGED "0" : Löschen durch Verschieben in den Papierkorb
(Standardwert)
"1" : Privilegiertes Löschen. Entfernt Dokumente
unwiederbringlich aus dem System.

Beispiel:

d3.hook.setProperty("DELETE_PRIVILEGED", "1")

Hinweis

Weitere Informationen zum Löschen von Dokumenten finden sie im Kapitel Aufbewahrungsfristen

und Löschen von Dokumenten

d.3 hook & server scripting api (groovy)

72

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_delete_entry_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.10.2 hook_delete_exit_10

int hook_delete_exit_10(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType docType)

Aufrufzeitpunkt:

d.3 hook & server scripting api (groovy)

73

•

•

1.

2.

Nach dem Löschen des Dokuments. Entsprechend kann der Löschvorgang in diesem

Einsprungpunkt nicht mehr abgebrochen werden.

Ob der Löschvorgang erfolgreich war, kann über den Parameter errorCode geprüft werden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das zu löschende Dokument

user Benutzer, der das Dokument löscht

errorCode 0: Dokument wurde erfolgreich gelöscht
sonst: Löschen fehlgeschlagen; Fehlercode

docType Dokumentart des zu löschenden Dokuments

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_delete_exit_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType
docType){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

d.3 hook & server scripting api (groovy)

74

3.

4.

5.

6.

7.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.11 Löschen von Verknüpfungen (Unlink)

4.1.11.1 hook_unlink_entry_30

int hook_unlink_entry_30(D3Interface d3, Document docFather, Document docChild)

Aufruf:

Direkt vor Ausführung des Datenbankbefehl zum Lösen der Verknüpfung.

Parameter Beschreibung

d3 die d.3-Schnittstelle

docFather das übergeordnete Dokument

docChild das untergeordnete Dokument

d.3 hook & server scripting api (groovy)

75

1.

2.

3.

4.

5.

6.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_unlink_entry_30")
 // (4)
 public int doSomething(D3Interface d3, Document docFather, Document docChild){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.11.2 hook_unlink_exit_10

int hook_unlink_exit_10(D3Interface d3, Document docFather, Document docChild, Integer unlinkErrorCode,
Integer errorCode)

Aufruf:

Nach der Verknüpfungslösung zweier Dokumente.

d.3 hook & server scripting api (groovy)

76

1.

2.

3.

Parameter Beschreibung

d3 die d.3-Schnittstelle

docFather das übergeordnete Dokument

docChild das untergeordnete Dokument

unlinkErrorCode 0: Verknüpfungslösung war erfolgreich
-1: Vater und Kind sind identisch bzw. einer der beiden
existiert gar nicht
-2: Die beiden Dokumente sind nicht verknüpft
-4: Beim Entfernen der Verknüpfung trat ein Datenbankfehler
auf (s. dazu errorCode)

errorCode 0 = Ok
sonst Datenbank- oder Hook-Fehler

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_unlink_exit_10")
 // (4)
 public int doSomething(D3Interface d3, Document docFather, Document docChild, Integer unlinkErrorCode,
Integer errorCode){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

d.3 hook & server scripting api (groovy)

77

4.

5.

6.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.12 Postkorb (SendHoldFile)

4.1.12.1 hook_ack_holdfile_exit_10

int hook_ack_holdfile_exit_10(D3Interface d3, User user, Document doc, Integer holdfileId)

Quittieren eines Postkorbeintrags.

Aufrufzeitpunkt:

Nach dem Quittieren eines Postkorbeintrages durch Aufruf der API-Funktion

AcknowledgeReceivedHoldFile.

Verhindern lässt sich ein Quittieren nicht mehr, da der Aufruf nach dem Quittieren stattfindet.

Parameter Beschreibung

d3 die d.3-Schnittstelle

user Benutzer, der die Quittierung ausgelöst hat

doc das quittierte Dokument

holdfileId ID des Postkorbeintrags

d.3 hook & server scripting api (groovy)

78

1.

2.

3.

4.

5.

6.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_ack_holdfile_exit_10")
 // (4)
 public int doSomething(D3Interface d3, User user, Document doc, Integer holdfileId){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.13 Redlining (WriteRedline)

4.1.13.1 hook_write_redline_entry_10e

int hook_write_redline_entry_10(D3Interface d3, Document doc, User user, DocumentType docType)

Aufrufzeitpunkt:

Die Funktion wird vor dem Schreiben einer Redlining-Datei ausgeführt.

d.3 hook & server scripting api (groovy)

79

1.

2.

3.

4.

5.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument zu dem die Redlining-Datei abgelegt wird

user der ausführende Benutzer

docType Dokumentart des Dokuments

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_write_redline_entry_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

d.3 hook & server scripting api (groovy)

80

6.

7.

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.13.2 hook_write_redline_exit_30

int hook_write_redline_exit_30(D3Interface d3, Document doc, User user, DocumentType docType)

Aufruf:

Nach dem Schreiben einer Redlining-Datei (per d.3-API-Call WriteRedline).

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument zu dem eine Redlining-Datei abgelegt wurde

user der ausführende Benutzer

docType Dokumentart des Dokuments

d.3 hook & server scripting api (groovy)

81

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_write_redline_exit_30")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

82

4.1.14 Senden einer Wiedervorlage (SendHoldfile)

4.1.14.1 hook_holdfile_entry_10

int hook_holdfile_entry_10(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup
sender, Integer chainId, String notice, String wvType)

Aufrufzeitpunkt:

Wird aufgerufen, bevor die Übergabeparameter geprüft werden.

Die Werte der Übergabeparameter sind auch noch in den folgenden Hook-Eigenschaftsfeldern verfügbar:

d3server_empfaenger_wv[1]

d3server_sender_wv[1]

d3server_kette_id

Diese Werte können per d3.hook.property() Aufruf verändert werden.

Parameter Beschreibung

doc das Dokument, welches in die Wiedervorlage gestellt werden soll

recipient Benutzer- oder Gruppenobjekt des Empfängers

sender Benutzer- oder Gruppenobjekt des Senders

chainId Ketten-ID, die für diesen Postkorbeintrag verwendet werden soll

notice Betrefftext der Postkorbbenachrichtigung

wvTyp Typ-ID der Postkorbbenachrichtigung

Mögliche Werte:

"" = normale Postkorbbenachrichtigung
"W" = Workflow-Benachrichtigung
... = sonstige (ggf. selbst definierte Werte)

d.3 hook & server scripting api (groovy)

83

1.

2.

3.

4.

5.

6.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_holdfile_entry_10")
 // (4)
 public int doSomething(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup sender,
Integer chainId, String notice, String wvType){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.14.2 hook_holdfile_entry_20

int hook_holdfile_entry_20(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup
sender, Integer chainId, String notice, String wvType)

Aufrufzeitpunkt:

Wird aufgerufen, wenn Datum etc. bereits auf Plausibilität geprüft worden sind. Es sind aber noch nicht

die Rechte des Empfängers auf das Dokument geprüft worden.

d.3 hook & server scripting api (groovy)

84

1.

2.

3.

4.

5.

6.

Die Werte sind hier nicht mehr änderbar.

Eingabeparameter siehe hook_holdfile_entry_10 (doc_id, recipient, sender, chain_id).

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_holdfile_entry_20")
 // (4)
 public int doSomething(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup sender,
Integer chainId, String notice, String wvType){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.14.3 hook_holdfile_entry_30

int hook_holdfile_entry_30(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup
sender, Integer chainId, String notice, String wvType)

d.3 hook & server scripting api (groovy)

85

1.

2.

3.

4.

5.

6.

Aufrufzeitpunkt:

Wird aufgerufen, direkt vor dem Eintrag in die Datenbank, wenn auch schon die Rechte des Empfängers

auf das Dokument geprüft wurden. Die Werte sind hier nicht mehr änderbar.

Eingabeparameter:

siehe hook_holdfile_entry_10 (doc_id, recipient, sender, chain_id).

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_holdfile_entry_30")
 // (4)
 public int doSomething(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup sender,
Integer chainId, String notice, String wvType){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

86

4.1.14.4 hook_holdfile_exit_10

int hook_holdfile_exit_10(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup sender,
Integer chainId, Integer errorCode)

Aufrufzeitpunkt:

Direkt nach dem Datenbank-Befehl, der die Wiedervorlage aktiviert.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, für das eine Postkorbbenachrichtigung eingestellt
wurde

recipient der Empfänger der Benachrichtigung

sender der Absender der Benachrichtigung

chainId Ketten-ID, die für diesen Postkorbeintrag verwendet werden soll

errorCode 0: alles OK
sonst: Datenbank-Fehlernummer beim Eintrag der Wiedervorlage
in die Datenbank

d.3 hook & server scripting api (groovy)

87

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_holdfile_exit_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup sender,
Integer chainId, Integer errorCode){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

88

4.1.15 Senden von E-Mails bei Wiedervorlage

4.1.15.1 hook_send_email_entry_10

int hook_send_email_entry_10(D3Interface d3, Document doc, String recipient, String sender, String subject,
Integer trigger, String url_link)

Aufruf:

Vor dem Versenden einer E-Mail.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, für das die E-Mail zur Postkorbnachricht gesendet
wird

recipient Empfänger der E-Mail (d.3-Benutzername oder E-Mail-Adresse)

sender Absender der E-Mail (d.3-Benutzername)

subject Betrefftext

trigger 0 = keine Wiedervorlage-E-Mail
1 = E-Mail für Wiedervorlage
2 = E-Mail für Workflow-Wiedervorlage

url_link HTTP-Link für die Ansicht in d.3one
Hinweis: Der Parameter ist nur gefüllt wenn d.3one installiert ist.

In dieser Hook-Funktion können E-Mail-Eigenschaften über die folgenden Hook-Eigenschaftswerte gesetzt

werden:

Eigenschaft Beschreibung

api_email_body_file E-Mail-Body aus einer Datei laden. Name und Pfad einer
Datei, die den Body-Text enthält

api_email_mail_format "html": HTML-Format
sonst: Text-Format (Standard)

api_email_attach 1 = das Dokument als Anhang an die E-Mail hängen
0 = Dokument nicht anhängen (Standard)

d.3 hook & server scripting api (groovy)

89

1.

2.

3.

4.

5.

6.

d3.hook.setProperty("api_email_body_file", "D:/hooks/data/myBody.html")
d3.hook.setProperty("api_email_mail_format", "html")
d3.hook.setProperty("api_email_attach", "1")

Die Eigenschaften werden jeweils nach erfolgtem E-Mail-Versand zurückgesetzt. Die E-Mail-Funktion kann

durch Return-Wert ungleich 0 abgebrochen werden.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_send_email_entry_10")
 // (4)
 public int doSomething(D3Interface d3, Document doc, String recipient, String sender, String subject, Integer
trigger, String url_link){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

90

4.1.15.2 hook_send_email_entry_20

int hook_send_email_entry_20(D3Interface d3, Document doc, String recipient, String sender, String subject,
Integer trigger)

Aufruf:

Vor dem Versenden einer E-Mail. E-Mailadresse wurde ermittelt, Gruppenauflösung wurde durchgeführt.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, für das die E-Mail zur Postkorbnachricht gesendet
wird

recipient Empfänger der E-Mail (d.3-Benutzername oder E-Mail-Adresse)

sender Absender der E-Mail (d.3-Benutzername)

subject Betrefftext

trigger 0 = keine Wiedervorlage-E-Mail
1 = E-Mail für Wiedervorlage
2 = E-Mail für Workflow-Wiedervorlage

url_link HTTP-Link für die Ansicht in d.3one
Hinweis: Der Parameter ist nur gefüllt wenn d.3one installiert ist.

In dieser Hook-Funktion können E-Mail-Eigenschaften über die folgenden Hook-Eigenschaftswerte gesetzt

werden:

Eigenschaft Beschreibung

api_email_body_file E-Mail-Body aus einer Datei laden. Name und Pfad einer
Datei, die den Body-Text enthält

api_email_mail_format "html": HTML-Format
sonst: Text-Format (Standard)

api_email_attach 1 = das Dokument als Anhang an die E-Mail hängen
0 = Dokument nicht anhängen (Standard)

Hinweis

Die Hook-Funktion wird nur einmal aufgerufen, also nicht für jede versendete Mail separat.

d.3 hook & server scripting api (groovy)

91

1.

2.

3.

4.

5.

6.

d3.hook.setProperty("api_email_body_file", "D:/hooks/data/myBody.html")
d3.hook.setProperty("api_email_mail_format", "html")
d3.hook.setProperty("api_email_attach", "1")

Die Eigenschaften werden jeweils nach erfolgtem E-Mail-Versand zurückgesetzt. Die E-Mail-Funktion kann

durch Return-Wert ungleich 0 abgebrochen werden.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_send_email_entry_20")
 // (4)
 public int doSomething(D3Interface d3, Document doc, String recipient, String sender, String subject, Integer
trigger){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

92

1.

4.1.15.3 hook_send_email_exit_10

int hook_send_email_exit_10(D3Interface d3, Document doc, String recipient, String sender, String subject,
Integer retCode)

Aufruf:

Nach dem Versenden einer E-Mail.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument für die die E-Mail versendet wurde

recipient Empfänger der E-Mail (d.3-Benutzername oder E-Mail-Adresse)

sender Absender der E-Mail (d.3-Benutzername)

subject Betrefftext

retCode 1 = Nachricht wurde gesendet
0 = Nachricht konnte nicht gesendet werden

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_send_email_exit_10")
 // (4)
 public int doSomething(D3Interface d3, Document doc, String recipient, String sender, String subject, Integer
retCode){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

d.3 hook & server scripting api (groovy)

93

2.

3.

4.

5.

6.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.16 Sperren eines Dokuments

4.1.16.1 hook_block_entry_10

int hook_block_entry_10(D3Interface d3, Document doc, User user)

Aufrufzeitpunkt:

Vor dem Sperren eines Dokuments im Status "Freigabe".

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das zu sperrende Dokument

user der ausführende Benutzer

d.3 hook & server scripting api (groovy)

94

1.

2.

3.

4.

5.

6.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_block_entry_10")
 // (4)
 public int doSomething(D3Interface d3, Document doc, User user){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.16.2 hook_block_exit_10

int hook_block_exit_10(D3Interface d3, Document doc, User user)

Aufrufzeitpunkt:

Nach dem Sperren eines Dokuments im Status "Freigabe".

Parameter Beschreibung

d3 die d.3-Schnittstelle

d.3 hook & server scripting api (groovy)

95

1.

2.

3.

4.

5.

6.

Parameter Beschreibung

doc das gerade gesperrte Dokument

user der ausführende Benutzer

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_block_exit_10")
 // (4)
 public int doSomething(D3Interface d3, Document doc, User user){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

96

4.1.17 Stammdaten

4.1.17.1 hook_on_user_change_exit_10

int hook_on_user_change_exit_10(D3Interface d3, User actionUser, User newUser, User oldUser)

In diesem Einsprungspunkt können Anpassungen an einem gerade geänderten oder neu anzulegenden

Benutzerobjekt vorgenommen werden.

Weder das Anlegen des Benutzers, noch ein Ändern des Benutzers kann in diesem Hook verhindert

werden. D.h., macht dieser Hook Änderungen am Benutzerobjekt, die nicht in die Datenbank geschrieben

werden können (beispielsweise, weil die maximale Spaltenlängen überschritten wurden), wird das Objekt

so angelegt, als wäre der Hook nicht ausgeführt worden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

actionUser der ausführende Benutzer

newUser der neue bzw. geänderte Benutzer

oldUser das ungeänderte Benutzer-Objekt

Über das newUser Objekt können mittels der entsprechenden Setter folgende Benutzereigenschaften

geändert werden:

Name der Eigenschaft Beschreibung

email E-Mail-Adresse des Benutzers

phone Telefonnummer des Benutzers

plant Werk des Benutzers

department Abteilung des Benutzers

optField(int idx) Optionale Felder zum Benutzer (Array-Indizes 1-10)

Wird der Hook mit einem Returncode ungleich "0" beendet, werden die Änderungen des Hooks am

Benutzerobjekt ignoriert.

d.3 hook & server scripting api (groovy)

97

1.

2.

3.

4.

5.

6.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_on_user_change_exit_10")
 // (4)
 public int doSomething(D3Interface d3, User actionUser, User newUser, User oldUser){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.18 Statustransfer

4.1.18.1 hook_transfer_entry_30

int hook_transfer_entry_30(D3Interface d3, User user, Document doc, Integer fileId, String sourceStatus, String
destStatus, UserOrUserGroup destEditor)

Aufrufzeitpunkt:

Vor dem Statustransfer eines Dokuments in einen anderen Status.

d.3 hook & server scripting api (groovy)

98

1.

2.

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausführende Benutzer

doc das Dokument, das transferiert werden soll

fileId File-ID der Dokumentversion

sourceStatus Quellstatus des Dokuments (B, P, F, A)

destStatus Zielstatus des Dokuments (B, P, A)

destEditor Zielstatus „Bearbeitung“:
Benutzer- oder Gruppenname
Zielstatus „Prüfung“:
Gruppenname
Sonst leer

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.UserOrUserGroup;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_transfer_entry_30")
 // (4)
 public int doSomething(D3Interface d3, User user, Document doc, Integer fileId, String sourceStatus, String
destStatus, UserOrUserGroup destEditor){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

d.3 hook & server scripting api (groovy)

99

3.

4.

5.

6.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.18.2 hook_transfer_exit_30

int hook_transfer_exit_30(D3Interface d3, User user, Document doc, Integer fileId, String sourceStatus, String
destStatus, UserOrUserGroup destEditor, Integer errorCode)

Aufrufzeitpunkt:

Nach dem Statustransfer eines Dokuments in einen anderen Status.

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausführende Benutzer

doc das Dokument, das transferiert wurde

fileId File-ID der Dokumentversion

sourceStatus Quellstatus des Dokumentes (B, P, F, A)

destStatus Zielstatus des Dokumentes (B, P, A)

destEditor Zielstatus „Bearbeitung“: Benutzer- oder Gruppenobjekt
Zielstatus „Prüfung“: Benutzer- oder Gruppenobjekt; null falls keine Prüfergruppe
angegeben

errorCode 0 = Statustransfer erfolgreich
Fehlercode sonst

d.3 hook & server scripting api (groovy)

100

1.

2.

3.

4.

5.

6.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.UserOrUserGroup;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_transfer_exit_30")
 // (4)
 public int doSomething(D3Interface d3, User user, Document doc, Integer fileId, String sourceStatus, String
destStatus, UserOrUserGroup destEditor, Integer errorCode){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.19 Validieren von Eigenschaftswerten (ValidateAttributes)

4.1.19.1 hook_validate_import_entry_10

int hook_validate_import_entry_10(D3Interface d3, User user, DocumentType docType, Document doc, String
nextcall)

d.3 hook & server scripting api (groovy)

101

Aufrufzeitpunkt:

Es wurden lediglich die Eigenschaften des neu zu importierenden Dokuments zugewiesen.

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausführende Benutzer

docType Dokumentart des zu validierenden Dokuments

doc das Dokument, das vor dem Import validiert werden soll

nextcall der Wert des Parameters "nextcall" der API-Funktion
ValidateAttributes

Hinweis

Falls diese Hook-Funktion einen Wert ungleich 0 liefert, wird die Validierung der Suchbegriffe

abgebrochen.

Die API-Funktion ValidateAttributes liefert dann den Wert 9500-(X) zurück (allgemeiner

Fehlercode in kundenspezifischer Hook-Funktion). "X" ist hier der Rückgabewert des Hooks.

Es wird empfohlen, im Hook einen negativen Return-Wert zu verwenden, damit die Ausgabe des

API-Calls >9500 ist, da dieser Bereich freigehalten wurde.

Es ist dann möglich, auf den Client-Rechnern über die Client-Verteilung eine msglib.usr mit einem

beliebigen Text für den Returncode (z.B. 9542) zu hinterlegen.

Hinweis

Diese Funktion wird im Kontext der API-Funktion ValidateAttributes ausgeführt. Das bedeutet,

dass die Funktion nicht ausgeführt wird, wenn ein Dokument über den Hostimport importiert wird.

Sie wird ausgeführt, wenn man einen Import über d.3 import ausführt, da von diesem Programm

vor dem Import eines Dokuments diese API-Funktion aufgerufen wird.

d.3 hook & server scripting api (groovy)

102

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_validate_import_entry_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, User user, DocumentType docType, Document doc, String nextcall){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.19.2 hook_validate_search_entry_10

int hook_validate_search_entry_10(D3Interface d3, User user, DocumentType docType, Document
searchContext, String nextcall)

d.3 hook & server scripting api (groovy)

103

Aufrufzeitpunkt:

Es wurden lediglich die Suchbegriffe in die entsprechenden Kontextfelder transportiert.

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausführende Benutzer

docType Dokumentart der gesuchten Dokumente, wenn dokumentart-
spezifisch gesucht wird;
ansonsten leeres Dokumentart-Objekt

searchContext Dokument-Objekt über das die Suchbegriffe ausgelesen und
geändert werden können

nextcall der Wert des Parameters "nextcall" der API-Funktion
ValidateAttributes

Diese Funktion wird im Kontext der API-Funktion ValidateAttributes ausgeführt.

Hinweis

Falls diese Hook-Funktion einen Wert ungleich 0 liefert, wird die Validierung der Suchbegriffe

abgebrochen. Die API-Funktion ValidateAttributes liefert dann den Wert 9500-(X) zurück

(allgemeiner Fehlercode in kundenspezifischer Hook-Funktion). "X" ist hier der Rückgabewert des

Hooks. Es wird empfohlen, im Hook einen negativen Return-Wert zu verwenden, damit die

Ausgabe des API-Calls >9500 ist, da dieser Bereich freigehalten wurde. Es ist dann möglich, auf den

Client-Rechnern über die Client-Verteilung eine msglib.usr mit einem beliebigen Text für den

Returncode (z.B. 9542) zu hinterlegen.

d.3 hook & server scripting api (groovy)

104

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_validate_search_entry_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, User user, DocumentType docType, Document searchContext, String
nextcall){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

105

4.1.19.3 hook_validate_update_entry_10

int hook_validate_update_entry_10(D3Interface d3, User user, DocumentType docType, Document doc, String
nextcall)

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausführende Benutzer

docType Dokumentart des zu aktualisierenden Dokuments

doc das d.3-Dokument, dessen Eigenschaften aktualisiert werden
sollen.
Diese können hier noch geändert werden.
sonst, wenn keine Dokument-ID vorgegeben, wird hier Leerstring
übergeben

nextcall der Wert des Parameters "nextcall" der API-Funktion
ValidateAttributes

Diese Hook-Funktion wird im Kontext der API-Funktion ValidateAttributes aufgerufen.

Wird eine Eigenschaft bei mehreren Dokumenten gleichzeitig mit Hilfe des changeatt.dxp geändert, greift

der Einsprungpunkt hook_validate_update_entry_10 nicht, da keine Validierung (ValidateAttributes)

stattfindet.

Diese Validierung findet statt, wenn ein Attribut bei einem Dokument über die Eigenschaften angepasst

wird.

d.3 hook & server scripting api (groovy)

106

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_validate_update_entry_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, User user, DocumentType docType, Document doc, String nextcall){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

107

1.

4.1.20 Verknüpfen von Dokumente bzw. Akten (LinkDocuments)

4.1.20.1 hook_link_entry_30

int hook_link_entry_30(D3Interface d3, Document docFather, Document docChild)

Aufrufzeitpunkt:

Alle Verknüpfungsdaten sind korrekt. Direkt vor dem Datenbank-Befehl, der die Verknüpfung registriert.

Parameter Beschreibung

docFather das übergeordnete Dokument bzw. die Akte

docChild das untergeordnete Dokument

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_link_entry_30")
 // (4)
 public int doSomething(D3Interface d3, Document docFather, Document docChild){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Hinweis

Diese Hook-Funktion wird nur aktiviert, wenn zuvor kein Fehler aufgetreten ist. Liefert diese

Funktion einen Wert ungleich 0, wird die Verknüpfungsaktion mit Fehler abgebrochen.

d.3 hook & server scripting api (groovy)

108

2.

3.

4.

5.

6.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.20.2 hook_link_exit_10

int hook_link_exit_10(D3Interface d3, Document docFather, Document docChild, Integer errorCode)

Aufrufzeitpunkt:

Direkt nach Ausführung des Datenbank-Befehls, der die Verknüpfung einträgt.

Parameter Beschreibung

docFather das übergeordnete Dokument, bzw. die Akte

docChild das untergeordnete Dokument

errorCode 0: Verknüpfung war erfolgreich
-1: Vater und Kind sind identisch bzw. einer der beiden existiert gar
nicht
-2: Die beiden Dokumente sind bereits verknüpft
-3: Die beiden Dokumente sind bereits in umgekehrter Hierarchie
miteinander verknüpft
-4: Beim Eintrag der Verknüpfung in die Datenbank trat ein
Datenbankfehler auf (s. dazu „error_number“)
error_number <> 0:
- 91: Die beiden Dokumente sind bereits in umgekehrter Hierarchie
miteinander verknüpft
sonst
Datenbank-Fehlernummer beim Eintrag der Verknüpfung in die
Datenbank

d.3 hook & server scripting api (groovy)

109

1.

2.

3.

4.

5.

6.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_link_exit_10")
 // (4)
 public int doSomething(D3Interface d3, Document docFather, Document docChild, Integer errorCode){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.21 Web-Veröffentlichung

4.1.21.1 hook_webpublish_entry_10

int hook_webpublish_entry_10(D3Interface d3, Document doc, User user, Integer publish)

Aufrufzeitpunkt:

Vor bzw. nach dem Veröffentlichen eines Dokuments für das Web.

d.3 hook & server scripting api (groovy)

110

1.

2.

3.

4.

5.

6.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, das veröffentlicht/zurückgezogen werden soll

user der ausführende Benutzer

publish 1: Dokument wird veröffentlicht
0: Veröffentlichung wird zurückgezogen

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_webpublish_entry_10")
 // (4)
 public int doSomething(D3Interface d3, Document doc, User user, Integer publish){
 // (5)
 d3.log.error("Hello world!");
 // (6)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

111

1.

4.1.21.2 hook_webpublish_entry_20

int hook_webpublish_entry_20(D3Interface d3, Document doc, User user, DocumentType docType, Integer
publish)

Aufrufzeitpunkt:

Vor bzw. nach dem Veröffentlichen eines Dokuments für das Web.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, das veröffentlicht/zurückgezogen werden soll

user der ausführende Benutzer

docType die zugehörige Dokumentart

publish 1: Dokument wird veröffentlicht
0: Veröffentlichung wird zurückgezogen

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_webpublish_entry_20")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType, Integer publish){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

d.3 hook & server scripting api (groovy)

112

2.

3.

4.

5.

6.

7.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.21.3 hook_webpublish_entry_30

int hook_webpublish_entry_30(D3Interface d3, Document doc, User user, DocumentType docType, Integer
publish)

Aufrufzeitpunkt:

Vor bzw. nach dem Veröffentlichen eines Dokuments für das Web.

d3 die d.3-Schnittstelle

doc das Dokument, das veröffentlicht/zurückgezogen werden soll

user der ausführende Benutzer

docType die zugehörige Dokumentart

publish 1: Dokument wird veröffentlicht
0: Veröffentlichung wird zurückgezogen

d.3 hook & server scripting api (groovy)

113

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_webpublish_entry_30")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType, Integer publish){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.21.4 hook_webpublish_exit_10

int hook_webpublish_exit_10(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType
docType, Integer publish)

d.3 hook & server scripting api (groovy)

114

1.

Aufrufzeitpunkt:

Vor bzw. nach dem Veröffentlichen eines Dokuments für das Web.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc_id das Dokument, das veröffentlicht/zurückgezogen wurde

user der ausführende Benutzer

errorCode 0= Aktion erfolgreich
Fehlercode sonst

docType Dokumentartkürzel

publish 1: Dokument wurde veröffentlicht
0: Veröffentlichung wurde zurückgezogen

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_webpublish_exit_10")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType docType,
Integer publish){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

d.3 hook & server scripting api (groovy)

115

2.

3.

4.

5.

6.

7.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.21.5 hook_webpublish_exit_20

int hook_webpublish_exit_20(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType
docType, Integer publish)

Aufrufzeitpunkt:

Vor bzw. nach dem Veröffentlichen eines Dokuments für das Web.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc_id das Dokument, das veröffentlicht / zurückgezogen wurde

user der ausführende Benutzer

errorCode 0= Aktion erfolgreich
Fehlercode sonst

docType Dokumentartkürzel

publish 1: Dokument wurde veröffentlicht
0: Veröffentlichung wurde zurückgezogen

d.3 hook & server scripting api (groovy)

116

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_webpublish_exit_20")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType docType,
Integer publish){
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

117

4.1.21.6 hook_webpublish_exit_30

int hook_webpublish_exit_30(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType
docType, Integer publish)

Aufrufzeitpunkt:

Vor bzw. nach dem Veröffentlichen eines Dokuments für das Web.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc_id das Dokument, das veröffentlicht/zurückgezogen wurde

user der ausführende Benutzer

errorCode 0= Aktion erfolgreich
Fehlercode sonst

docType Dokumentartkürzel

publish 1: Dokument wurde veröffentlicht
0: Veröffentlichung wurde zurückgezogen

d.3 hook & server scripting api (groovy)

118

1.

2.

3.

4.

5.

6.

7.

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_webpublish_exit_30")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 public int doSomething(3Interface d3, Document doc, User user, Integer errorCode, DocumentType docType,
Integer publish {
 // (6)
 d3.log.error("Hello world!");
 // (7)
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy)

119

1.

4.1.22 Workflow

4.1.22.1 hook_workflow_cancel_exit_20

int hook_workflow_cancel_exit_20(D3Interface d3, Document doc, String wflId, String stepId, User user)

Aufrufzeitpunkt:

Nachdem der Workflow für ein Dokument abgebrochen wurde.

Der Abbruch des Workflows kann hier nicht gestoppt werden.

Diese Hookfunktion wird nur aktiviert, wenn zuvor kein Fehler aufgetreten ist.

Parameter Beschreibung

doc das Dokument dessen Workflow-Durchlauf abgebrochen wurde

wflId die ID des Workflows

stepId ID des Workflow-Schrittes

user der ausführende d.3-Benutzer

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

// (2)
public class D3Hooks{
 // (3)
 @Entrypoint(entrypoint = "hook_workflow_cancel_exit_20")
 // (4
 public int doSomething(3Interface d3, Document doc, String wflId, String stepId, User user {
 // (5
 d3.log.error("Hello world!");
 // (6
 return 0;
 } // end of doSomething
} // end of D3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

d.3 hook & server scripting api (groovy)

120

2.

3.

4.

5.

6.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

4.2 Validierungshooks
Validierungshook-Funktionen können zur individuellen Eingabe-Validierung genutzt werden

(Plausibilitätshooks).

Die Annotation lautet: @Validation(entrypoint="<Bezeichner in Adminstration>")

Rückgabewert: 0 bei Erfolg und <> 0 bei Fehler

int myValidationHook(D3Interface d3, String value, Document doc)

Parameter Beschreibung

d3 die d.3 Schnittstelle

value der zu prüfende Eigenschaftswert

doc das Dokument, zu dem die Eigenschaft gehört

@Validation(entrypoint="ITValueValidation")
int validateValue(D3Interface d3, String value, Document doc)
{
 if(value == "Peter" && doc.field["name"] == "Smith"){
 return 0;
 }
 else{
 return -1;
 }
}// end of validateValue

Validierung einer Bestellnummer auf ein gültiges Format

d.3 hook & server scripting api (groovy)

121

 Zur Realisierung wird auf die Dokumenteigenschaft Bestellnummer eine Funktion zur Validierung

definiert.

Hinweis

Szenario:

Die Bestellnummer soll immer dem Format "Zwei Zahlen-Zwei Buchstaben-Fünf Zahlen" (/[0-9]{2}-

[a-zA-Z]{2}-[0-9]{5}/) genügen. Natürlich kann man das direkt in d.3 admin konfigurieren, aber als

Beispiel um die Funktionsweise für die Validierung zu demonstrieren, ist es ebenfalls geeignet.

d.3 hook & server scripting api (groovy)

122

1.

2.

3.

4.

5.

6.

//(1)
// Global d.3 libraries
import com.dvelop.d3.server.core.D3;

// Libraries to handle the diferent hook types
import com.dvelop.d3.server.Validation;
//(2)
public class D3Validate{
//(3)
 @Validation(entrypoint = "checkOrderNumber")
//(4)
 public int checkOrderNumber(D3 d3, def currentValue, Document doc){
//(5)
 def tmpValue = currentValue;
 def matchFlag = (tmpValue ==~ /[0-9]{2}-[a-zA-Z]{2}-[0-9]{5}/);
//(6)
 return(matchFlag ? 0 : -1);
 } // end of checkOrderNumber
}// end of D3Validate

Das Ganze kann mit Groovy etwas kürzer realisiert werden.

//(1)
// Import the required d.3 classes
import com.dvelop.d3.server.core.D3;
import com.dvelop.d3.server.Validation;

 //(2)
 public class D3Validate {
 //(3)
 @Validation(entrypoint = "checkOrderNumber")
 //(4)
 public int checkOrderNumber(D3 d3, def currentValue) {
 //(6)
 return((currentValue ==~ /[0-9]{2}-[a-zA-Z]{2}-[0-9]{5}/) ? 0 : -1);
 }// end of checkOrderNumber
}// end of D3Validate

Kommentare zu den einzelnen Blöcken

Import der benötigten Klassen.

Erstellen einer eigenen Klasse.

Um nun eine Groovy-Methode für die Validierung einer Dokumenteigenschaft nutzen zu können,

erfolgt über die Annotation @Validation eine Registrierung der Methode für eine in d.3 admin

konfigurierte, Validierungsfunktion.

Die Methode nimmt dann die oben beschriebenen Parameter in der vorgegebenen Reihenfolge

entgegen.

Innerhalb der Methode kann nun der übergebene Wert überprüft werden, im Beispiel mittels eines

regulären Ausdrucks.

Entspricht der Wert einem gültigen Wert, kann eine 0 ansonsten eine 1 zurückgegeben werden.

d.3 hook & server scripting api (groovy)

123

4.3 Wertemengen-Hooks
Wertemengen-Hooks dienen zur Erzeugung dynamischer Wertemengen.

Die Annotation lautet: @ValueSet(entrypoint="<Bezeichner in Administration>")

Maximal können mit einen Wertemengen-Hook 10.000 Werte zurückgegeben werden.

Sortierung: Die durch die Groovy-Hook-Funktion vorgegebene Reihenfolge der Werte wird

beibehalten.

def myValueSetHook(D3Interface d3, RepositoryField repoField, User user, DocumentType docType, Integer
rowNo, Integer validate, Document attribContext)

Parameter Beschreibung

d3 die d.3-Schnittstelle

repoField das Eigenschaftenfeld für das die Wertemenge definiert ist
per Methode provideValuesForValueSet() können die
gewünschten Werte übergeben werden

user der aufrufende Benutzer

docType Dokumentart, in der die Wertemenge enthalten ist

rowNo Zeilennummer für Mehrfacheigenschaften

validate Aufruf zur Wertvalidierung (0/1)

attribContext Dokument-Objekt mit dem Attributkontext.
Dieses enthält bei der Suche: die übrigen Suchkriterien.
Beim Import und Update die übrigen bereits gefüllten Attribute.

d.3 hook & server scripting api (groovy)

124

1.

2.

@ValueSet(entrypoint="MyMonths")
def myMonthsList(D3Interface d3, RepositoryField repoField, User user, DocumentType docType, Integer
row_no, Integer validate, Document attribContext) {
 List<String> names = ["01", "02", "03" /*, ...*/];
 repoField.provideValuesForValueSet(names);

 boolean translationGotOutdated = false;
 if(translationGotOutdated){
 d3.getArchive().removeTranslationFromCache("MyMonths", Locale.GERMAN);
 d3.getArchive().removeTranslationFromCache("MyMonths", new Locale("de", "AT"));
 }
}// end of myMonthsList

Einfache Wertmengen

Wir starten mit einer statischen einfachen Wertemenge welche über das Skript zur Verfügung gestellt

wird.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

// (1) Global d.3 libraries --1
import com.dvelop.d3.server.core.D3Interface;2
import com.dvelop.d3.server.Document;3
import com.dvelop.d3.server.User;4
import com.dvelop.d3.server.DocumentType;5
 6
// Libraries to handle the different hook types --------------------------------7
import com.dvelop.d3.server.ValueSet;8
 9
// Special libraries ---10
import com.dvelop.d3.server.RepositoryField;11
 12
// (2)13
class SimpleValueSet{14
 // (3)15
 @ValueSet(entrypoint = "customerNumbers")16
 // (4)17
 def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType
docType, int rowNo, int validate, Document doc){

18

 19
 // (5) Define static list of customer numbers -----------------------------20
 def customerList = ["4711", "4712", "4713", "4714"];21
 22
 // (6) Prepare List for interaction ------------------------------------23
 if(customerList.size() > 0){24
 reposField.provideValuesForValueSet(customerList);25
 }26
 } // end of getCustomerNumber27
}// end of SimpleValueSet28

d.3 hook & server scripting api (groovy)

125

3.

4.

5.

6.

1.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen.

Ermittlung von Werten welche in der Wertmenge zur Verfügung gestellt werden.

Bereitstellung der Werte als Auswahlliste für den User.

Statische Wertmengen interne Datenbank

Damit eine Wertemenge nicht an zwei Stellen gepflegt werden muss, können die Daten aus dem

führenden System ermittelt und als Auswahlliste zur Verfügung gestellt werden.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

// (1) Global d.3 libraries --1
import com.dvelop.d3.server.core.D3Interface;2
import com.dvelop.d3.server.Document;3
import com.dvelop.d3.server.User;4
import com.dvelop.d3.server.DocumentType;5
 6
// Libraries to handle the different hook types --------------------------------7
import com.dvelop.d3.server.ValueSet;8
 9
// Special libraries ---10
import com.dvelop.d3.server.RepositoryField;11
 12
// (2)13
class StaticValueSet{14
 // (3)15
 @ValueSet(entrypoint = "customerNumbers")16
 // (4)17
 def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType
docType, int rowNo, int validate, Document doc){

18

 19
 // (5) Prepare sql statmenet --20
 def sqlQuery = "SELECT customerNo FROM CustomerData ORDER BY customerNo DESC"; // !!
ATTENTION

21

 22
 // (6) Execute sql statmenet --23
 def resultRows = d3.sql.executeAndGet((String) sqlQuery);24
 25
 // (7) Prepare list for user interface --26
 if(resultRows.size() > 0){27
 reposField.provideValuesForValueSet(resultRows.collect{ it.customerNo });28
 }29
 } // end of getCustomerNumber30
}//end of StaticValueSet31

d.3 hook & server scripting api (groovy)

126

2.

3.

4.

5.

6.

7.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen.

Bereitstellung eines SQL-Statements zur Ermittlung der notwendigen Werte aus der Datenbank.

Ausführung des SQL-Statements gegen die d.3-Datenbanktabelle.

Bereitstellung der Werte als Auswahlliste für den User.

Statische Wertmengen externe Datenbank

Damit eine Wertemenge nicht an zwei Stellen gepflegt werden muss, können die Daten aus dem

führenden System ermittelt und als Auswahlliste zur Verfügung gestellt werden.

d.3 hook & server scripting api (groovy)

127

1.

2.

3.

4.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen.

// (1) Global d.3 libraries --1
import com.dvelop.d3.server.core.D3Interface;2
import com.dvelop.d3.server.Document;3
import com.dvelop.d3.server.User;4
import com.dvelop.d3.server.DocumentType;5
 6
// Libraries to handle the different hook types --------------------------------7
import com.dvelop.d3.server.ValueSet;8
 9
// Special libraries ---10
import com.dvelop.d3.server.RepositoryField;11
 12
// (2)13
class StaticValueSet{14
 // (3)15
 @ValueSet(entrypoint = "customerNumbers")16
 // (4)17
 def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType
docType, int rowNo, int validate, Document doc){

18

 19
 // (5) Prepare database Connection -----------------------------------20
 def dbConnection = Sql.newInstance("jdbc:sqlserver:<ServerName>\
\<InstanceName>:0;databaseName=<Databse>", "<User>", „<Password>");

21

 22
 // (6) Prepare sql statmenet ---23
 def sqlQuery = "SELECT customerNo FROM CustoemrData ORDER BY customerNo DESC"; // !!
ATTENTION

24

 25
 // (7) Execute sql statmenet ---26
 def resultRows = dbConnection.rows((String) sqlQuery);27
 28
 // (8) Prepare list for user interface -------------------------------29
 if(resultRows.size() > 0){30
 reposField.provideValuesForValueSet(resultRows.collect{ it.customerNo });31
 }32
 } // end of getCustomerNumber33
}// end of StaticValueSet34

d.3 hook & server scripting api (groovy)

128

5.

6.

7.

8.

Aufbau der JDBC-Verbindung zur externen Datenbank; der dazu gehörige JDBC-Treiber muss

entsprechend zur Verfügung gestellt werden...

Bereitstellung eines SQL-Statements zur Ermittlung der notwendigen Werte aus der Datenbank.

Ausführung des SQL-Statements gegen die d.3-Datenbanktabelle.

Bereitstellung der Werte als Auswahlliste für den User.

Dynamische Wertemengen

Damit eine Wertemenge nicht an zwei Stellen gepflegt werden muss, können die Daten aus dem

führenden System ermittelt und als Auswahlliste zur Verfügung gestellt werden. Dabei ist dann auch eine

dynamische Berücksichtigung von Suchkriterien möglich..

d.3 hook & server scripting api (groovy)

129

// (1) Global d.3 libraries --1
import com.dvelop.d3.server.core.D3Interface;2
import com.dvelop.d3.server.Document;3
import com.dvelop.d3.server.User;4
import com.dvelop.d3.server.DocumentType;5
 6
// Libraries to handle the different hook types --------------------------------7
import com.dvelop.d3.server.ValueSet;8
 9
// Special libraries ---10
import com.dvelop.d3.server.RepositoryField;11
 12
//---13
// (2)14
public class DynamicValueSet{15
 // (3)16
 @ValueSet(entrypoint = "customerNumbers")17
 // (4)18
 def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType
docType, int rowNo, int validate, Document doc){

19

 20
 // (5) Get needed values from the document properties -------------------21
 def customerNo = doc.field[1];22
 def zipCode = doc.field[6];23
 24
 //(6) If needed filter on the customer no -------------------------------25
 if(customerNo == null || (customerNo != null && customerNo.size() < 3)) {26
 reposField.provideValuesForValueSet("Please enter at least 3 characters!");27
 }28
 29
 // (7) Prepare the sql-statement with the needed params -----------------30
 def sqlQuery = """SELECT customerNo + ' ' + name AS 'completeName'31
 FROM CustomerData WHERE 1 = 1 """;32
 33
 def sqlParams = [];34
 35
 sqlQuery += " AND customerNo LIKE ? OR name LIKE ?";36
 37
 sqlParams.add(customerNo + "%"); // for the first questionmark after customerNo38
 sqlParams.add(customerNo + "%"); // for the second questionmark after Name39
 40
 if(zipCode!= null && zipCode!= ""){41
 sqlQuery += " AND zipCode LIKE ?";42
 sqlParams.add(zipCode + "%");43
 }44
 45
 // (8) Using external database ---46
 def dbConnection = Sql.newInstance("jdbc:sqlserver:<ServeRName>\
\<InstanceName>:0;databaseName=<Database>", "<User>", „<Password>");

47

 48
 // (9) Using external database ---49
 def resultRows = dbConnection.rows(sqlQuery, sqlParams);50
 51
 // (10) --52
 if(resultRows.size() > 0){53

d.3 hook & server scripting api (groovy)

130

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

•

•

•

•

•

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen.

Definition der Filter-Variablen und die Übergabe der erweiterten Eigenschaften.

Die Inhalte der erweiterten Eigenschaften werden kontrolliert und bei fehlenden oder zu wenig

bereitgestellten Inhalten wird die Generierung abgebrochen.

Zusammenstellung des SQL-Statement inkl. der dynamischen Zuordnung der bereitgestellten

Filterkriterien.

Aufbau der JDBC-Verbindung zur externen Datenbank; der dazu gehörige JDBC-Treiber muss

entsprechend zur Verfügung gestellt werden.

Ausführung des SQL-Statements gegen die d.3-Datenbanktabelle.

Bereitstellung der Werte als Auswahlliste für den User.

Übersetzung von dynamischen Hook-Wertemengen

Es ist möglich, dynamische Hook-Wertemengen zu übersetzen.

Die Annotation lautet: @ValueSetTranslation(entrypoint="<Bezeichner in Administration>")

Der Entry-Point-Name entspricht dem Namen des zugehörigen @ValueSet-Hooks.

Der Übersetzungs-Hook muss immer alle Werte für das jeweilige Eigenschaftsfeld in der

angeforderte Sprache liefern, nicht nur die Werte, die für den aktuell aktiven Benutzer oder

Kontext relevant sind.

Die Übersetzungen werden vom d.3-Server gecacht. Die Dauer, für die diese Werte gecacht bleiben,

ist implementationsabhängig und kann sich mit zukünftigen Versionen ändern.

Mit der Funktion d3.getArchive().removeTranslationFromCache() kann ein Neuladen der

Übersetzungen zu jeder Zeit erzwungen werden. Diese Funktion kann von beliebiger Stelle aus

aufgerufen werden, nicht nur aus dem Wertemengen-Hook.

Hinweis: diese Schnittstelle ist schon für die Unterstützung von regionalen Dialekten vorbereitet.

Bitte beachten Sie aber, dass d.3 zum gegenwärtigen Zeitpunkt noch keine vollständige

Unterstützung für dieses Feature bietet.

 reposField.provideValuesForValueSet(resultRows.collect{ it.completeName });54
 }55
 } // end of getCustomerNumber56
} // end of DynamicValueSet57

d.3 hook & server scripting api (groovy)

131

• An die Volltext-Engine (d.search) wird nur der Speicher-Wert übergeben, nicht die Übersetzungen.

Eine Volltextsuche nach den Übersetzungen ist somit nicht möglich.

def myValueSetTranslation(D3Interface d3, Translation transl)

Parameter Beschreibung

d3 die d.3-Schnittstelle

transl das Übersetzungs-Objekt.

Die angeforderte Zielsprache und der zugehörige Entry-Point sind in
diesem Objekt vorgegeben und dürfen nicht geändert werden.

Über die set-Methode können Werte eingetragen werden.

 @ValueSetTranslation(entrypoint="MyMonths")
 def myMonthsTranslation(D3Interface d3, Translation transl) {
 def lang = transl.locale.language

 if (lang == "de") {
 if (transl.locale.country == "AT")
 transl.set("01", "Jänner");
 else
 transl.set("01", "Januar");
 transl.set("02", "Februar");
 transl.set("03", "März");
 // ...
 } else if (lang == "th") {
 transl.set("01", "มกราคม");
 transl.set("02", "กุมภาพันธ์");
 transl.set("03", "มีนาคม");
 // ...
 } else {
 transl.set("01", "January");
 transl.set("02", "February");
 transl.set("03", "March");
 // ...
 }
 }

4.4 Dokumentklassen-Hooks
Dokumentklassen-Hooks können zur Bestimmung dynamischer Berechtigungen genutzt werden, die nicht

mit d.3 Dokumentklassen und Restriktionsmengen abgebildet werden können.

In der Administration anzugeben per: @D3HOOK ("Bezeichner für den Hook")

Die Annotation lautet: @DocumentClass(entrypoint="<der per @D3HOOK angegebene Bezeichner>")

int myDocumentClassHook(D3Interface d3, String value, DocumentType docType, String userId, Document doc)

d.3 hook & server scripting api (groovy)

132

Parameter Beschreibung

d3 die d.3-Schnittstelle

value Wert der Dokumenteigenschaft, für das die Hook-Funktion
aufgerufen wurde

docType die Dokumentart des zu prüfenden Dokuments

userId d.3-Benutzer-ID des ausführenden Benutzers

doc das zu prüfende Dokument

Rückgabewert:

1: Berechtigt

0: kein Zugriff

d.3 hook & server scripting api (groovy)

133

1.

2.

3.

4.

5.

// (1) Global d.3 libraries ---
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types -------------------------------
import com.dvelop.d3.server.DocumentClass;
// (2)
public class D3DocumentClassHook{
 // (3)
 @DocumentClass(entrypoint="myDocumentClassHook")
 // (4)
 @Condition(doctype = ["XXXX"])
 // (5)
 def myDocumentClassHook(D3Interface d3, String value, DocumentType docType, String userId, Document
doc){
 if (value > 10000 && docType.id == "DINV"){
 if (value <= 20000 && doc.owner == "Meyer"){
 return 1;
 }
 else if (value > 20000 && doc.owner == "Chef"){
 return 1;
 }
 else {
 return 0;
 }
 }
 else
 return 1;
 }
 }// end of myDocumentClassHook
}// end of D3DocumentClassHook

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Optional können die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen.

d.3 hook & server scripting api (groovy)

134

•

•

•

4.5 Groovy-Schnittstelle in d.3 admin
d.3 admin

Unter d.3 admin > d.3 config gibt es die Bereiche Hook-Funktionen und Java/Groovy, welche beide im

Kontext einer Groovy-Nutzung konfiguriert werden müssen.

Hook-Funktionen

In d.3 admin müssen im Bereich Systemeinstellungen > d.3 config folgende Konfigurationen

vorgenommen werden:

Groovy-Hooks aktivieren

Geben sie die Verzeichnisse, in denen die per Groovy implementierten, kundenspezifischen

Programmanpassungen enthalten sind, hier an.

Neuladen von Groovy-Hooks (NUR WÄHREND DER ENTWICKLUNG UND NUR AUF DEM TEST-

SYSTEM)

Ist dieser Schalter aktiviert, so führt das Speichern von Änderungen in Groovy Hook-Dateien dazu,

das diese direkt neu geladen werden. Dadurch muss kein d.3-Prozess neu gestartet werden und die

Code-Änderungen sind sofort aktiv. Dieser Schalter kann bei der Entwicklung von Hook-Funktionen

hilfreich sein. In Produktivumgebungen sollte er jedoch ausgeschaltet bleiben.

Java/Groovy

In d.3 admin müssen im Bereich Systemeinstellungen > d.3 config folgende Konfigurationen

vorgenommen werden:

Java/Groovy Support

Einschalten der Unterstützung für die Ausführung von Java und Groovy Code in d.3.

Hinweis

Dokumentklassen-Hooks werden bei einer Suche für jedes einzelne Dokument in der Treffermenge

aufgerufen!

Das kann zu Performance-Problemen bei der Rechteprüfung führen und somit die Dokumenten-

Suche verlangsamen, insbesondere dann, wenn im Dokumentklassen-Hook SQL-Kommandos

abgesetzt werden.

Noch größere Auswirkungen auf die Performance bestehen, wenn Dokumentklassen-Hooks für

Mehrfacheigenschaftsfelder (60er Felder) eingesetzt werden, da diese dann zusätzlich jede mit

einem Wert belegte Zeile jeder Mehrfacheigenschaft aufgerufen werden.

Wichtig

Dokumentklassen-Hooks werden bei der Dokumenten-Suche parallel in mehreren Threads

ausgeführt. Diese Hook-Funktionen dürfen daher nur threadsicheren Code enthalten und aufrufen.

d.3 hook & server scripting api (groovy)

135

•

•

•

Java CLASSPATH

Dateipfad bzw. Dateipfade Semikolon-getrennt zu den eigenen Java Klassen. Hier kann ein

Verzeichnis/können Verzeichnisse angegeben werden, in dem/denen die .class-Dateien abgelegt

sind oder auch der Dateiname einer JAR-Datei. Hier wäre auch die Option eine Classpath-Datei zu

nutzen.

Java/Groovy API Funktionen

Aktiviert die PlugIn Schnittstelle für API Funktionen entwickelt in Java bzw. Groovy. Groovy-Skripte

oder JAR-Dateien, die d.3-API-Funktionen implementieren, werden aus diesem Verzeichnis geladen.

Nicht empfohlen.

Java Remote Debugging

Java Virtual Maschine im Debugmodus starten. Dadurch ist es möglich sich per Remote Java

Debugger mit einem d.3-Server-Prozess zu verbinden, um die darin ausgeführten Groovy Hooks zu

debuggen. Für die Kommunikation wird Port 43400 benutzt. Da jeder d.3-Prozess eine eigene Java

Virtual Machine (JVM) startet, werden die benutzten Ports hochgezählt. Der erste mit aktiviertem

JAVA_REMOTE_DEBUGGING gestartete Prozess öffnet Port 43400, der Zweite Port 43401 usw. Der

ermittelte Port wird beim Start der JVM per Meldung Java Remote Debugging Port in das d.3-Log

ausgegeben.

Hinweis: Die JVM wird von d.3 On-Demand beim ersten Zugriff auf Groovy-Code gestartet und

steht damit i.d.R. noch nicht direkt nach Start des Prozesses zur Verfügung.

4.6 Programmierung von Hook-Funktionen
Benötigte Java-Bibliotheken

Im Groovy-Kontext werden Bibliotheken benötigt, welche über die Integration der Datei

groovyhook.jar zur Verfügung stehen und nur noch in den Groovy-Dateien referenziert werden müssen.

Globale Bibliotheken

Zur Nutzung des d.3-Interface-Objektes wird eigentlich nur die Bibliothek

com.dvelop.d3.server.core.D3Interface benötigt.

Spezielle Bibliotheken für die einzelnen Hook-Typen

Hinweis

Da es aktuell bei der Nutzung der JavaDoc-Dokumentation und damit der Groovy-Templates mit

der Implementierung von "d3Interface" noch technische Herausforderungen gibt, kann zur

Programmierung auch die Basis-Bibliothek import com.dvelop.d3.server.core.D3 genutzt werden.

Hier sollte aber auf jeden Fall für die produktive Nutzung wieder auf das D3Interface gewechselt

werden.

d.3 hook & server scripting api (groovy)

136

Annotation Einsatz Syntax Benötigte Java-
Bibliothek

@Entrypoint d.3 Eintrittspunkte @Entrypoint(entrypoint="
name_in_admin", order* =
n)

import
com.dvelop.d3.server.Ent
rypoint;

@ValueSet Wertemengen-Hooks @ValueSet(entrypoint="n
ame_in_admin", order* =
n)

import
com.dvelop.d3.server.Val
ueSet;
import
com.dvelop.d3.server.Re
positoryField;

@Validation Validierungs-Hooks @Validation(entrypoint="
name_in_admin", order* =
n)

import
com.dvelop.d3.server.Vali
dation;

@DocumentClas
s

Dokumentklassen-
Hooks

@DocumentClass(entrypoi
nt="name_in_admin",
order* = n)

import
com.dvelop.d3.server.Do
cumentClass;

@Condition Filter auf bestimmte
Dokumentklassen

@Condition(doctype =
["DRECH", "DBEST",
"DLIEF"])

import
com.dvelop.d3.server.Co
ndition;

Styleguide-Empfehlung

Zur Bereitstellung der Funktionalität muss mind. eine Klasse vom Typ public angelegt werden; wobei

public im Kontext Groovy auch weggelassen werden kann. Hier könnte man für die einzelnen Typen von

Hook-Funktionen jeweils eine eigene Klasse, vielleicht sogar eine eigene Datei, bereitstellen. Die

einzelnen Klassennamen könnten wie folgt aussehen:

Klassenname Beschreibung

D3Hooks Für die Behandlung von Eintrittspunkten

D3DataSets Für die Implementierung von Wertemengen

D3Validate Zur Bereitstellung von Validierungs-Funktionen auf
Eigenschaftenebene

D3DocClasses Zur Realisierung von spezifischen Dokumentklassen

order-Option

* Der optionale Parameter order kann zur Definition einer Reihenfolge der Abarbeitung definiert

werden, wenn auf einem Eintrittspunkt mehrere Groovy-Funktionen definiert sind.

d.3 hook & server scripting api (groovy)

137

Klassenname Beschreibung

D3FolderScheme Falls erweiterte Aktenpläne benötigt werden könnte diese
Klasse bereitgestellt werden.

Natürlich könnte es auch sinnvoll sein, abhängig von Projekten oder Lösungen unterschiedliche Dateien,

Klassen und Funktionen bereitzustellen. Hier ist die Namenskonvention nur ein Vorschlag.

Registrieren einer Groovy-Methode als Hook-Funktion

Für die Registrierung der verschiedenen Hook-Typen stehen die folgenden Annotationen zur Verfügung:

Die Registrierung besteht darin, dass die Annotation im Quellcode direkt der Java/Groovy-Methode

vorangestellt wird, die für den per entrypoint angegebenen Hook-Eintrittspunkt aufgerufen werden soll.

import com.dvelop.d3.server.Entrypoint;

public class MyHooks{
 @Entrypoint(entrypoint="hook_insert_entry_10", order = 1)
 @Condition(doctype= ["DRECH", "DBEST", "DLIEF"])
 int checkIncommingDocs(D3Interface d3, User user, DocumentType docType, Document doc){
 println "The function checkIncommingDocs was called inside the hook function entry Point
hook_insert_entry_10";
 return 0;
 } // end of checkIncommingDocs
}// end of MyHooks

Rückgabewert von Hook-Methoden

Als Rückgabewert wird eine Zahl (Integer) erwartet. Dieser zurückgegebene Wert wird vom Server als

Fehlercode ausgewertet.

Wert = 0 ==> Erfolg!

Wert <> 0 ==> Fehler in Hook-Funktion. Je nach Hook-Funktion führt dies zum Abbruch der Aktion in deren

Kontext die Hook-Funktion ausgeführt wurde.

Hinweis

Eine Groovy-Klasse die von d.3 geladen und registriert werden soll, muss einen öffentlichen

Konstruktor ohne Parameter (public no-argument constructor) bereitstellen. Das ist auch erfüllt,

wenn der Konstruktor weggelassen wird, weil dann der Java Default-Konstruktor implizit existiert.

d.3 hook & server scripting api (groovy)

138

Verwenden von Java-Bibliotheken

•

•

•

•

Hinweis

Bei Groovy ist das Schlüsselwort return“ für das Verlassen einer Methode mit Rückgabewert

optional, kann also weggelassen werden.

Wenn es nicht angegeben ist, dann nimmt Groovy kurzer Hand den letzten Variablenwert, der vor

der schließenden Klammer benutzt wurde und gibt diesen implizit als Returnwert zurück.

Dies kann zu Fehlern oder ungewollten Rückgabewerten führen. Deshalb sollte eine Hook-

Methode explizt mit return beendet werden. Wenn der Rückgabewert nicht relevant ist, dann mit

return 0.

Groovy Hook-Funktionen für die d.3-Eintrittspunkte werden automatisch konfiguriert.

Die Bezeichner für d.3-Eintrittspunke müssen nicht mehr unter d.3 admin > d.3 config

>Hook-Funktionen > Hook-Funktionen ausführen einzeln eingetragen werden.

Wird beim Laden einer Groovy-Klasse eine Annotation für einen Eintrittspunkt gefunden, so

wird die annotierte Methode dafür registriert.

Im Config-Modul ist hinter dem Eintrittspunkt dann <groovy hook> als Kennzeichnung für

die Registrierung eingetragen.

Es können auch mehrere Methoden pro Eintrittspunkt registriert werden.

Wichtig

Da die Aktualisierung von d.3 admin manchmal etwas dauern kann, kann auch die Ausgabe im Log-

File genutzt werden, dort wird das erfolgreiche Laden der Groovy-Funktionen zu den

Eintrittspunkten ebenfalls dokumentiert.

d.3 hook & server scripting api (groovy)

139

Sollte es bei der Umsetzung einer Hook-Funktion notwendig werden, von Drittanbietern oder selbst

erstellte Java-Bibliotheken zu verwenden (zum Beispiel um ihr CRM-System anzusprechen), können Sie

diese Bibliotheken für jeden Hook spezifisch angeben.

Legen sie dazu neben ihrer vorhandene <Hookname>.groovy eine weitere Datei <Hookname>.classpath

an. In dieser Datei können zeilenweise Einträge für den Java-Classpath definiert werden. Es können

absoluter Pfade, sowie Pfade relativ zum aktuellen Verzeichnis verwendet werden, die auf JAR-Dateien

zeigen.

Auf diese Weise sind die Java-Bibliotheken voneinander isoliert, sodass Sie in mehreren Hooks

unterschiedliche Versionen von Bibliotheken verwenden können.

Isolation von Hook-Klassen

Jede Hook-Klasse wird von einer eigenen Groovy-Classloader-Instanz geladen. Dadurch kann ein Hook-

Objekt nicht auf die Eigenschaften anderer Hook-Objekte zugreifen.

Allerdings kann jede Groovy-Klasse per "import" Kommando in einer anderen sichtbar gemacht werden.

Die Klasse kann dann instanziiert werden oder, im Fall von statischen Elementen, können diese direkt

aufgerufen werden.

Gibt es mehrere, thematisch zusammengehörige Hook-Klassen, so sollte gemeinsam genutzter Code in

eine eigene Klasse und damit ein eigenes Modul ausgelagert werden.

Soll mittels Hook beim Import validiert werden, ob die Kundendaten so wie eingegeben auch im CRM-

System hinterlegt wurden, und gleichzeitig eine Wertemenge möglicher Kunden angeboten werden, dann

findet man hier typischerweise gemeinsam genutzten Code. Dieser sollte in einer eigenen Groovy-Klasse

implementiert werden, die wiederrum von den anderen Groovy-Hook-Klassen genutzt werden kann.

Package-Struktur

Genau wie Java-Klassen werden auch Groovy-Klassen in Packages organisiert. Der Name des Packages

muss am Anfang der Quelldatei vor den Import-Anweisungen und der ersten Klassendefinition genannt

sein. Dabei können Sie die gewohnte Form der Strukturierung anhand von Domain-Namen in umgekehrter

Reihenfolge verwenden. Wird kein "package" angegeben wird das "Default"-Package vorgegeben.

Anbei ein paar Empfehlungen für Package-Namen:

com.dvelop.scripts

Hinweis

JDBC-Treiber können nicht hookspezifisch eingehängt werden, sondern müssen global geladen

werden. Details dazu unter Access to other databases.

Package-Struktur: Aktuell leider nicht nutzbar!

In der aktuellen Version können leider keine Packages genutzt werden!

d.3 hook & server scripting api (groovy)

140

Groovy-Skripte welche im Kontext eines Server-Interfaces bzw. des Prozessmanagers aufgerufen und

damit im Verzeichnis "ext_groovy" abgelegt werden. Die resultierende Verzeichnisstruktur wäre dann

"ext_groovy\com\dvelop\scripts".

com.dvelop.hooks

Die Groovy-Hook-Funktionen, welche die einzelnen Hook-Eintrittspunkte bedienen, sollten hier ebenfalls

in einem eigenen Package definiert werden. Das resultierende Verzeichnis wäre dann zum Beispiel

"d3server.prg\D3T\groovyHooks\com\dvelop\hooks".

com.dvelop.api

Werden mittels Groovy-Funktionen eigene API-Funktionen bereitgestellt, könnte dieses Package genutzt

werden. Eine resultierende Verzeichnisstruktur könnte dann wie folgt aussehen

"d3server.prg\D3T\groovyAPI\com\dvelop\api".

4.7 d.3-dynamische Rückmeldungen aus den Hook-Funktionen
Sollten aus einer Serveraktion dynamische Texte auch an die Clientseite übergebenen werden, zum

Beispiel für dynamischer Fehlermeldungen, kann die Hook-Eigenschaft "additional_info_text" aus jedem

Hook gesetzt werden.

d3.hook.setProperty("additional_info_text", "My message text for the Client!")

Wird der Hook von einem d.3 server-Prozess (nicht hostimp oder async) aufgerufen, wird dieser Text als

zusätzlicher Exportparameter bei dem aktuellen API-Call an an den Client übergeben.

4.8 Nummernkreis für Returnwerte
Die Returnwerte aus den Hook-Funktionen werden intern mit einem Offset-Wert verrechnet.

Der Wert, welcher auf der Client-Seite ausgewertet werden kann, ist dabei das Ergebnis aus der

Berechnung "Offset-Wert – Bereichswert "!

Eintrittspunkt Bereich Offs
et

Ergebnis* Beispiel (Offset - Eigener-
Wert)

ImportDocument -8000 -> -9999 1000
0

18000 ->19999 10000 - (-8000) = 18000

ImportNewVersionDocu
ment

-8000 ->
-9999

2000
0

28000 ->29999 20000 - (-8500) = 28500

Hinweis

Dieser Text wird dem Benutzer nicht durchgängig bei allen Clients angezeigt.

d.3 hook & server scripting api (groovy)

141

•

•

•

DeleteDocument -1900 -> -1999 4000 5900 -> 5999 4000 - (-1925) = 5925

[Alle anderen] -1 -> -499 9500 9501 -> 9999 9500 - (-250) = 9750

* Offset-Wert – Bereichswert = Ergebnis

4.9 Nutzung des Transportsystems für Groovy-Funktionen
Mit dem Transportsystem können Einstellungen zwischen d.3-Repositorys übertragen werden. Auch

Groovy-Hook-Module können damit transportiert werden.

Hierzu werden im Bearbeitungsmodus von d.3 admin Projekte definiert, die alle zu transportierenden

Einstellungen klammern.

Um ein Hook-Modul einem Tranportprojekt zuzuordnen, wird der Projektename per Annotation

@TransportProject in das Groovy-Hook-Modul eingetragen.

Die Annotation @TransportProject ist auf Klassenebene definiert und muss deshalb einer Java/Groovy

Klassendefinition vorangestellt werden.

Als Parameter der Annotation können ein oder mehrere Projektnamen oder auch die GUID's der Projekte

angegeben werden.

import com.dvelop.d3.server.TransportProject;

// OPTION 1: Project name
@TransportProject("myProject")
public class MyTestHooks {

} // end of MyTestHooks

// OPTION 2: Project-GUID
@TransportProject("6ACDA408-3638-4B70-8E0D-036CC9559F7E")
public class MyTestHooks {

} // end of MyTestHooks

// OPTION 3: or a combination of Project name and prodjct GUID
@TransportProject(["New installation", "931608C4-E075-4E89-AA35-66E6FD74770B"])
public class MyTestHooks {
 // …
} // end of MyTestHooks

Folgende Regeln sind zu beachten, um Groovy-Hook-Module transportieren zu können:

Der Dateiname der Module darf sich nicht mehr ändern, sobald erstmals ein Meilenstein

geschlossen wurde, der zu einem der annotierten Projekte gehört

Pro Modul sollte nur eine Klasse verwendet werden.

Die Module werden in jeden Meilenstein der annotierten Projekte aufgenommen.

d.3 hook & server scripting api (groovy)

142

•

•

•

•

•

•

•

Beim Import eines Meilensteines wird jedes Modul ausgetauscht, also überschrieben.

Beim Import wird in den per Parameter HOOK_GROOVY_DIRS_CUSTOMER eingestellten

Verzeichnissen nach dem Dateinamen der Module gesucht. Wird die Datei gefunden, wird diese

überschrieben.

Wenn keine Datei mit dem Namen gefunden wurde, wird die Datei in das erste Verzeichnis aus

HOOK_GROOVY_DIRS_CUSTOMER kopiert.

Wenn kein Verzeichnis über HOOK_GROOVY_DIRS_CUSTOMER konfiguriert ist, wird in dem d.3-

Konfigurationsverzeichnis (Speicherort der d3config.ini) ein Unterordner groovy_hooks erstellt

und die Datei dort abgelegt.

Wird die Modul-Datei erstmalig im Ziel-Repository abgelegt, müssen die d.3-Prozesse neu gestartet

werden.

Wird die Modul-Datei ausgetauscht, existiert vorher also schon, hängt es vom Parameter

HOOK_GROOVY_RELOAD_ON_CHANGE ab, ob das Modul direkt aktiviert wird.

Wenn ein Groovy-Modul im Zielsystem gelöscht werden soll, muss die Annotation des Moduls im

Quellsystem entfernt werden und die Datei im Zielsystem gelöscht werden.

d.3 hook & server scripting api (groovy)

143

1.

2.

5 Groovy API-Funktionen
d.3 server verfügt ab Version 8 über eine PlugIn-Schnittstelle für API-Funktionen.

Damit können eigene, in Java/Groovy entwickelte API-Funktionen registriert werden.

Diese können dann genauso wie jede andere d.3-API-Funktion über das d.3-Kommunikations-Protokoll

d3fc aufgerufen werden.

Aktivieren der PlugIn-Schnittstelle

Öffnen Sie d.3 admin > Systemeinstellungen > d.3 config.

Geben Sie darin im Abschnitt Java/Groovy für den Eintrag Java/Groovy API Funktionen ein

Verzeichnis an.

Groovy-Skripte, die d.3-API-Funktionen implementieren, werden dann in diesem Verzeichnis gesucht und

daraus geladen.

Dadurch wird die PlugIn-Schnittstelle für API-Funktionen aktiviert.

Damit eine Java-Klasse als d.3 API-Funktion geladen und registriert wird, muss diese von der

Klasse D3ApiCall abgeleitet sein und eine Methode public int execute(D3Interface d3) implementieren.

Darüber steht dann das D3Interface zur Verfügung.

Wichtig

Groovy API-Funktionen stehen über die d.3 web webservice-API-Schnittstelle nicht zur Verfügung

Sie können von d.ecs forms über das dortige Skripting genutzt werden, sowie für d.velop-eigene

Projekte.

d.3 hook & server scripting api (groovy)

144

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.D3ApiCall;
import com.dvelop.d3.server.User;

public class GetMyDBData extends D3ApiCall
{
 public int execute(D3Interface d3)
 {
 def import_param = d3.remote.getImportParams()
 def id_value = import_param.get("id")
 def resultset = d3.sql.executeAndGet("SELECT column1, column2 FROM mytable WHERE id like ?",
[id_value])

 d3.remote.setExportTable(resultset)
 d3.remote.setExportParams(["number" : resultset.size()])

 return 0
 }
}

5.1 Groovy-API und Nutzung in JPL
Mit der Integration von Groovy als Server-Skriptsprache steht nun auch die Möglichkeit zur Verfügung

eigene API-Funktionen zu erstellen und zu nutzen.

Ein erstes Beispiel mit einen Aufruf aus JPL wird im Anschluss vorgestellt.

Groovy-Beispiel SQL-Abfrage als Serverfunktion

Hinweis

Szenario:

Beispielhaft wird hier eine Funktion dargestellt, die mittels SQL Werte aus einer Tabelle in der d.3-

Datenbank liest und diese zurückliefert.

d.3 hook & server scripting api (groovy)

145

1.

2.

3.

4.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann. Hier ist aber wichtig dass die Erweiterung

extendsD3ApiCall hinzugefügt wird.

Die Funktion, welche nun als API-Call bereitgestellt werden soll, wird nun definiert. Dabei können

über den Befehl getImportParams auch Parameter, welche über den Aufruf der Funktion

bereitgestellt werden, ausgelesen werden.

Mittels der Funktion setExportTable stehen dann auch die Ergebnisse aus der Funktion dem

Aufrufenden Programm zur Verfügung.

Ein d3FC-Aufruf mittels JPL implementiert

package com.dvelop.api;1
// (1) 2
import com.dvelop.d3.server.core.D3Interface;3
import com.dvelop.d3.server.D3ApiCall;4
import com.dvelop.d3.server.User;5
 6
// (2) 7
public class GetMyCustomerData extends D3ApiCall8
{9
// (3) 10
 public int execute(D3Interface d3){11
 def importParams = d3.remote.getImportParams(); 12
 def idValue = importParams.get("id");13
 def resultSet = d3.sql.executeAndGet("""SELECT name, customerNo, zipCode, city, street14
 FROM CustomerData 15
 WHERE customerNo = ?""", [idValue]);16
// (4) 17
 d3.remote.setExportTable(resultset);18
// (5) 19
 d3.remote.setExportParams(["number" : resultSet.size()]);20
 return 0;21
 }22
} // end of GetMyCustomerData23

d.3 hook & server scripting api (groovy)

146

1.

2.

3.

Kommentare zu den einzelnen Blöcken

Zur Aufnahme des Rückgabewertes wird eine lokale Variable angelegt.

Im nächsten Schritt müssen die Login-Parameter für den d3FC-Aufruf vorgegebenen werden.

Um nun die Funktion gemäß der eigenen Definition aufrufen zu können, muss der Funktionsname

festgelegt und die Parameter übergeben werden.

// (1) 1
vars lReturnValue2
 3
// (2) 4
call api_function("d3fc_user_set", "dvelop")5
call api_function("d3fc_password_set", "dvelop")6
call api_function("d3fc_remote_server_set", "127.0.0.1")7
call api_function("d3fc_port_set", "3400")8
call api_function("d3fc_timeout_set", "60")9
call api_function("d3fc_server_set", "B")10
 11
// (3) 12
// ACHTUNG ERST FUNKTION DANN PARAMETER13
call api_function("d3fc_function_name_set", "GetMyCustomerData")14
call api_function("d3fc_importing_set", "id" , "<CustomerNo>")15
call api_function("d3fc_exporting_set", "number")16
call api_function("d3fc_table_set_headline", "name customerNo zipCode city street .","O")17
 18
// (4) 19
lReturnValue = api_function("d3fc_execute")20
 21
// (5) 22
call api_function("d3fc_exporting_get" ,"number")23
vars lTableRowCount = api_single_info24
 25
 26
// (6)27
call api_log_error("SIZE :lTableRowCount ")28
call api_log_error(" :lReturnValue ")29
 30
 31
// (7)32
vars lRet, lName, lKdnr33
lRet = api_function("d3fc_first")34
 35
// (8)36
while(lRet != EOT)37
{ 38
 call api_function("d3fc_field_get","name")39
 lName = api_single_info40
 41
 call api_function("d3fc_field_get","customerNo")42
 lKdnr = api_single_info43
 44
 call api_log_error(":lName :lKdnr") 45
 lRet = api_function("d3fc_next")46
}47

d.3 hook & server scripting api (groovy)

147

4.

5.

6.

7.

Sind alle notwendigen Einstellungen vorgenommen kann der eigene API-Befehl nun mittels

"d3fc_execute" ausgeführt werden!

Die bereitgestellten Rückgabewerte können nun ausgelesen und in lokale Variablen übernommen

werden.

Zur Dokumentation der Funktion bzw. der Ergebnisse werden diese hier als Error-Message im Log-

File ausgegeben.

Im nächsten Schritt werden nun die einzelnen Kundendaten ausgelesen und ebenfalls im Log-File

ausgegeben.

d.3 hook & server scripting api (groovy)

148

d.3 hook & server scripting api (groovy)

149

6 Groovy-Skripte
Über d.3 server interface können neben den externen JPL-Skripten nun auch Groovy-Skripte ausgeführt

werden.

In einer Groovy-Skriptdatei steht die d.3-Schnittstelle als Field-Variable d3 zur Verfügung und kann direkt

genutzt werden.

d3.log.info("Groovy-Script started!")

Um in einer Entwicklungsumgebung den Typ des vordefinierten Fields d3 bekannt zu geben, damit

Typprüfungen, Kommandovervollständigung etc. funktionieren können, sollten die folgenden beiden

Zeilen am Anfang eines Skripts eingefügt werden.

import com.dvelop.d3.server.core.D3Interface
D3Interface d3 = getProperty("d3")

d3.log.info("Groovy-Script started !")

Verwenden von Groovy-Klassen und Java-Bibliotheken in Skripten

Das Groovy-Skript Verzeichnis "ext_groovy" sowie die definierten Groovy-Hook-Verzeichnisse werden bei

der Ausführung eines Skripts dem CLASSPATH hinzugefügt, sodass Klassen aus anderen Groovy-Skripten

im auszuführenden Skript genutzt werden können. Außerdem werden auch für Skripte Classpath-Dateien

(Dateiname: "<skriptname>.classpath") unterstützt. Auch die darin enthaltenden Pfade (zB. absoluter Pfad

einer JAR-Datei) werden dem Classpath hinzugefügt, um diese Resourcen in dem Skript nutzen zu können.

Beispiel: In einem Skript ../ext_groovy/myScript.groovy soll die JavaMail API (javax.mail.jar) benutzt

werden. Dazu wird der absolute Pfad der JAR-Datei in eine gleichnamige Classpath-Datei ../ext_groovy/

myScript.classpath eingetragen:

Beispielhafter Dateinhalt: D:\downloads\java\ext_jars\javax.mail-1.5.6.jar

d.3 hook & server scripting api (groovy)

150

Skripte zeitgesteuert starten

Soll ein Skript nicht interaktiv gestartet werden, sondern automatisch und zeitgesteuert, kann dieses auch

als sechster Kommandozeilenparameter eines Server-Prozesses in d.3 process manager angegeben

werden. Der Target-Eintrag in d.3 process manager sieht dann ähnlich aus wie folgender:

..\d3odbc32.exe haupt "" Master password D3P ext_groovy/myScript.groovy

d.3 hook & server scripting api (groovy)

151

7 d.3-Schnittstelle (D3Interface)

package com.dvelop.d3.server.core;

public interface D3Interface
{
 public interface ArchiveInterface // d.3 Archiv
 public interface SqlD3Interface // d.3 SQL Datenbank
 public interface D3RemoteInterface // Client API
 public interface ScriptCallInterface // Server API
 public interface ConfigInterface // Config-Parameter
 public interface LogInterface // Logging
 public interface HookInterface // Hook-Eigenschaften
 public interface StorageManagerInterface // Storagemanager

 public ArchiveInterface getArchive();
 public SqlD3Interface getSql();
 public D3RemoteInterface getRemote();
 public ScriptCallInterface getCall();
 public ConfigInterface getconfig();
 public LogInterface getlog();
 public HookInterface getHook();
 public StorageManagerInterface getStorageManager();
 }

Hinweis

Das D3Interface wird vom Server bei allen Aufrufen registrierter Groovy-Funktionen als erster

Parameter übergeben.

Dadurch steht die d.3-Schnittstelle in allen Hook-, API- und Skript-Funktionen zur Verfügung.

d.3 hook & server scripting api (groovy)

152

7.1 d.3 Archiv (ArchiveInterface)

ArchiveInterface

 public interface ArchiveInterface {
 public Document getDocument(String id, String contextUser);
 public Document getDocument(String id);
 public DocumentType getDocumentType(String id);
 public PredefinedValueSet getPredefinedValueSet(String id);
 public RepositoryField getRepositoryField(String id);
 public User getUser(String id);
 public UserGroup getUserGroup(String id);
 public UserOrUserGroup getUserOrUserGroup(String id);
 public AuthorizationProfile getAuthorizationProfile(String id);
 public void removeTranslationFromCache(String entryPoint, Locale lang);
 public Document newDocument();
 public Document importDocument(Document doc, Path importFilePath);
 public Document importDocument(Document doc);
 }

Das ArchiveInterface liefert verschiedene Java-Objekte, über die direkt auf die entsprechenden d.3-Archiv-

Objekte zugegriffen werden kann.

d.3 hook & server scripting api (groovy)

153

import com.dvelop.d3.server.core.D3Interface
import com.dvelop.d3.server.Document
import com.dvelop.d3.server.exceptions.D3Exception
import java.nio.file.Path
import java.nio.file.Paths

D3Interface d3 = getProperty("d3");

// Create an new empty document
Document newDoc = d3.archive.newDocument();

// Add system properties
newDoc.type = "DA1"; // ID of target document
newDoc.status = Document.DocStatus.DOC_STAT_RELEASE; // Target state of document
newDoc.editor = "dvelop"; // Handler
newDoc.setText(1, "Import per Groovy Skript"); // Comment
// erweiterte Eigenschaften zuweisen
newDoc.field[1] = "Attribute value 1 for new document";
newDoc.field[2] = "Attribute value 2 for new document";
newDoc.field[60][1] = "Multi value field 60-1 for new document";
newDoc.field[60][2] = "Multi value field 60-2 for new document";

// Define file for new document
Path importFile = Paths.get("D:\\temp\\my_file.txt");
try {
 // Import the document
 newDoc = d3.archive.importDocument(newDoc, importFile);
}
catch (D3Exception e) {
 println e.message;
 return;
}
println "Doc-ID of newly created document: " + newDoc.id;

7.1.1 Archivobjekte (ArchiveObject)

ArchiveInterface

public interface ArchiveObject
{
 public String getId();
}

Alle d.3-Archivobjekte sind von dieser Klasse abgeleitet. Damit kann in allen Archivobjekten die d.3-ID des

Objekts ermittelt werden.

d.3 hook & server scripting api (groovy)

154

Document doc;
doc.id // Document ID

DocumentType docType;
docType.id // Document type

User user;
user.id // User ID

d.3 hook & server scripting api (groovy)

155

7.1.2 Dokument (Document)

Document

class Document extends ArchiveObject
{
 public Field getField() // Groovy Collection Support for reading and writing the property values
 public DocumentType getType()
 public void setType(DocumentType type)
 public void setType(String typeId)
 public String getNumber()
 public void setNumber(String docNumber)
 public DocStatus getStatus()
 public void setStatus(DocStatus docStatus)
 public void setStatus(String docStatus)
 public int getVarnumber()
 public void setVarnumber(int varNumber)
 public UserOrUserGroup getEditor()
 public void setEditor(UserOrUserGroup editor)
 public void setEditor(String editor)
 public String getOwner()
 public String getFilename()
 public String getFileExtension()
 public Long getDocSize()
 public String getText(int lineIdx)
 public void setText(int lineIdx, String text)
 public Timestamp getCreated()
 public Timestamp getLastAccess()
 public Timestamp getLastUpdateFile()
 public Timestamp getLastUpdateAttribute()
 public Timestamp getLastUpdate()
 public Integer getSignaturesRequired()
 public Integer getColorCode()
 public void setColorCode(Integer colorCode)
 public String getReleaseVersionStatus()
 public boolean getIsVerified()
 public boolean getIsWebPublished()
 public boolean getIsInWorkflow()
 public int getNumericId()
 public boolean getIsArchived()
 public Integer getLastAlterationNumber()
 public Integer getAlterationNumberReleased()
 public Integer getCodepage()
 public Integer getMaxArchiveIndex()
 public String getCaption()
 public boolean getHasMultData()

 public void updateAttributes(String userId)
 public void updateAttributes(String userId, boolean noHooks)
 public int changeType (String docTypeId, String userId)
 public String getPermission (String userId)
 public int block (boolean block, String userId)
 public int verify (String userId)

d.3 hook & server scripting api (groovy)

156

 public int transfer (String destination, String newEditor, String changeRemark, boolean asynchronous,
int archivIndex, String userId)
 public int publishForWeb (boolean publish, String userId)
 public int addDependent (String filename, String docStatus, String docExt, String userId)
 public int addDependent (String filename, DocStatus docStatus, String docExt, String userId)
 public int deleteDependent (char docStatus, String docExt, String userId)
 public int deleteDependent (String docStatus, String docExt, String userId)
 public int deleteDependent (String docStatus, String docExt, String userId)
 public int startLifetime (boolean overwriteOldDate, int lifeTimeDays)
 public int setCacheDays (char docStatus, int archiveIndex, int daysInCache)
 public int checkFolderScheme (String userId);

 public String getFileFormat()
 public String getFileFormatPublic()
 public void setFileFormat(String fileFormat)

 public DocumentVersion[] getVersions()
 public PhysicalVersion[] getPhysicalVersions()
 public Integer getFileIdCurrentVersion()
 public Integer getFileIdRelease()
 public Timestamp getEndOfRetentionDate()
 public DocumentNote[] getNotes()

 public SysFields getSysField() // Groovy Collection Support für das Lesen und Schreiben von
Systemeigenschaften
 public void addSysField(String fieldName)
 public List<DocumentSysValue> getSysValues()
 public Set<String> getSysFieldNames()
 }

 *) Der Collection Support für Fields ermöglicht die Nutzung des Subscript Operators [], für den Zugriff auf

die erweiterten Eigenschaften eines Dokumentes.

Document doc
doc.field[1] = "Value of property " // Writing value
println doc.field[1] // Reading value

// Accessing with property name
doc.field["Name"] = "Meier" // Writing value
println "Name = " + doc.field["Name"] // Reading value

Hinweis

Wenn ein Feld nicht existiert oder ein Feld keinen Wert besitzt, so wird NULL zurückgegeben.

d.3 hook & server scripting api (groovy)

157

Nutzung der Schnittstelle für die Systemeigenschaften:

println doc.sysField["InvoiceNo"][1] // Reading value
doc.sysField["InvoiceNo"][1] = "Value of system property" // Add or change value / add new system property
with value
doc.sysField["InvoiceNo"].add("Wert") // Another way to do this
doc.sysField["InvoiceNo"].remove(2) // Delete value

doc.addSysField("New system field") // Add new system property without value
doc.sysField["InvoiceNo"].clear() // Delete all values for this property

println doc.sysFieldNames // Go through all system properties
println doc.sysField["InvoiceNo"].sysValues // Go though all values of one system property
println doc.sysValues // Go through all values of all system properties

d.3 hook & server scripting api (groovy)

158

7.1.2.1 Dokumentversionen (DocumentVersion)

DocumentVersion

public class DocumentVersion extends ArchiveObject
{
 public enum Category {
 DOC_VERS_REGULAR,
 DOC_VERS_OVERWRITTEN,
 DOC_VERS_BLOCKED,
 DOC_VERS_REPLACED,
 DOC_VERS_DELETED,
 DOC_VERS_ERASED,
 DOC_VERS_MIGRATED,
 DOC_VERS_BOOKED,
 INVALID_CATEGORY
 };

 public String getDocId()
 public boolean isCurrentVersion()
 public boolean hasStatus()
 public DocStatus getStatus()
 public boolean hasHistStatus()
 public DocStatus getHistStatus()
 public boolean hasFileId()
 public Integer getFileId()
 public boolean hasHistFileId()
 public Integer getHistFileId()
 public Category getCategory()
 public String getChangeReason()
 public String getDeleteReason()
 public PhysicalVersion getPhysicalVersion()
 public String getCreator()
 public Timestamp getCreateDate()
 public String getReleaseUser()
 public Timestamp getReleaseDate()
 public String getBlockUser()
 public Timestamp getBlockDate()
 public String getArchiveUser()
 public Timestamp getArchiveDate()
 public String getVerifier()
 public Timestamp getVerifyDate()
 public String getDeleter()
 public Timestamp getDeleteDate()
 public Double getExternalVersionId()
}

d.3 hook & server scripting api (groovy)

159

Beispiel für den Zugriff auf die Versionen eines Dokuments.

import com.dvelop.d3.server.Document
import com.dvelop.d3.server.DocumentVersion
import com.dvelop.d3.server.PhysicalVersion
import com.dvelop.d3.server.DependentFile

 Document doc
 // Go / interate through all versions
 for (version in doc.versions)
 {
 // Get the properties of the current Version
 println version.archiveDate
 println version.creator
 println version.status
 // ..

 // When the current Version has a physical file attached, get access
 if (version.physicalVersion)
 {
 // Get the properties of the file
 println version.physicalVersion.fileSize
 println version.physicalVersion.fileLocalisation
 println version.physicalVersion.fileFormat
 // ..

 // Get all properties of depending files
 for (dependentFile in version.physicalVersion.dependentFiles)
 {
 // Get the properties of each depending file
 println dependentFile.fileFormat
 println dependentFile.fileSize
 println dependentFile.fileId
 // ..
 }
 }
 }

d.3 hook & server scripting api (groovy)

160

7.1.2.2 Dateiversionen (PhysicalVersion)

PhysicalVersion

public final class PhysicalVersion extends ArchiveObject
{
 enum FileLocalisation
 FILE_LOC_NO_FILE,
 FILE_LOC_DISK_ONLY,
 FILE_LOC_STORAGE_ONLY,
 FILE_LOC_DISK_AND_STORAGE,
 FILE_LOC_PROXY_PLACEHOLDER,
 FILE_LOC_PROXY_PENDING
 };
 public Integer getFileId()
 public String getDocId()
 public Document.DocStatus getStatus()
 public String getFileExtension()
 public String getFileFormat()
 public Long getFileSize()
 public FileLocalisation getFileLocalisation()
 public String getD3Hash()
 public String getFileHash()
 public SignatureInfo[] getSignatureInfos()
 public DependentFile[] getDependentFiles()
}

d.3 hook & server scripting api (groovy)

161

7.1.2.2.1 abhängige Dateien (DependentFile)

DependentFile

public class DependentFile extends ArchiveObject
{
 public String getExtension()
 public String getDocId()
 public Integer getFileId()
 public String getFileFormat()
 public FileLocalisation getFileLocalisation()
 public Long getFileSize()
 public Integer getFileSizeInKb()
 public String getD3Hash()
 public Timestamp getProcDate()
 public String getExternalMedium()
 public String getExpired()
 public String getFlagStorageExport()
 public Timestamp getStorageExportDate()
 public String getD3FileHash()
 }

7.1.2.2.2 Signaturen (SignatureInfo)

SignatureInfo

public class SignatureInfo extends ArchiveObject
{
 enum SigContentType
 SIG_DETACHED, SIG_EMBEDDED, SIG_ATTACHED, SIG_EMBEDDED_AND_DETACHED,
 SIG_INVALID_CONTENT_TYPE;
 };
 public String getExtension()
 public SigContentType getContent()
 public Integer getReachedNumber()
 public Integer getRequestedNumber()
 public Integer getReachedLevel()
 public Integer getRequestedLevel()
 public String getTodo()
 public String getDone()
 public String getRemark()
}

d.3 hook & server scripting api (groovy)

162

7.1.2.3 Systemeigenschaften (DocumentSysValue)

DocumentSysValue

public class DocumentSysValue extends ArchiveObject
{
 public String getDocId()
 public Integer getFieldId()
 public String getFieldName()
 public Integer getFieldIndex()
 public void setFieldIndex(int fieldIndex)
 public String getFieldValue()
 public void setFieldValue(String value)
 public String toString()
}

7.1.2.4 Notizen (DocumentNote)

DocumentVersion

public class DocumentNote extends ArchiveObject
{
 public String getMessage()
 public User getUser()
 public Timestamp getDateCreated()
}

d.3 hook & server scripting api (groovy)

163

Skript-Beispiel für die Ausgabe der Notizen eines Dokuments.

import com.dvelop.d3.server.core.D3Interface
import com.dvelop.d3.server.Document
import com.dvelop.d3.server.User
import com.dvelop.d3.server.DocumentNote
import java.text.SimpleDateFormat

D3Interface d3 = getProperty("d3")

Document doc = d3.archive.getDocument("P000000123")

println "Notes form the document <" + doc.id + "> :"

doc.notes.each { note ->
 String noteCreated = new SimpleDateFormat("dd.MM.yyyy HH:mm:ss").format(note.dateCreated);
 println " User:" + note.user.realName + " Created: " + noteCreated + " Note: " + note.message
}

7.1.3 Dokumentart (DocumentType)

DocumentType

class DocumentType extends ArchiveObject
{
 public DocumentTypeAttribute getfield() // Groovy Collection Support für den Zugriff auf die Attribute der
Dokumentart
 public String getDefaultName()
 public String getName()
 public String getType()
 public boolean getIsFolder()
 public boolean getIsExportedToStorage()
 public boolean getIsSystemDocType()
 public boolean getIsDummyType()
 public boolean getIsMultiType()
 public boolean getIsTemplateType()
 public String getArchiveId()
 public String getDsearchCorpus()
 public int getFieldNoByName(String attribName)
}

d.3 hook & server scripting api (groovy)

164

7.1.3.1 Eigenschaften einer Dokumentart (DocumentTypeAttribute)

DocumentTypeAttribute

public final class DocumentTypeAttribute extends ArchiveObject
{
 public RepositoryField getRepositoryField()
 public RepositoryField getRepoField()
 public boolean getIsMandatory()
 public boolean getIsModifiable()
 public boolean getIsHidden()
 public boolean getViewInSearchMask()
 public boolean getViewInImportMask()
 public boolean getViewInResultSet()
}

7.1.4 Benutzer (User)

User

public final class User extends ArchiveObject
{
 public enum MemberType {DIRECT, RECURSIVE};

 public String getLongName()
 public String getRealName()
 public String getEmail()
 public String getPhone()
 public String getPlant()
 public String getDepartment()
 public boolean getIsCheckedOut()
 public boolean getIsSysUser()
 public String getCheckoutText()
 public String getOptField(int idx)
 public String getLdapDN()
 public UserGroup[] getGroups()
 public boolean isMemberOfGroup(String groupId) // check of direct member (MemberType.DIRECT)
 public boolean isMemberOfGroup(String groupId, MemberType memberType)
 public AuthorizationProfile[] getAuthorizationProfiles()
 public boolean hasAuthorizationProfile(String profileId)
 public DocumentType[] getDocTypes()
 }

Beispiel für die Nutzung in einem Groovy-Skript

d.3 hook & server scripting api (groovy)

165

import com.dvelop.d3.server.core.D3Interface
import com.dvelop.d3.server.User
import com.dvelop.d3.server.UserGroup
import com.dvelop.d3.server.AuthorizationProfile

// Get a user object
def user = d3.archive.getUser("dvelop")

// Reading some user properties
println "Die EMail-Adresse des Benutzers " + user.realName + " (" + user.id + ") lautet: " + user.email

// Get all groups, with the current user as a member
user.getGroups().each { group ->
 println group.id + " - " + group.name
}

// Get all right profiles, with the current user as a member
user.getAuthorizationProfiles().each { profile ->
 println profile.id + " - " + profile.name
}

// Get all document types, to which the user has access to
user.getDocTypes().each { docType ->
 println docType.id + " - " + docType.name
}

d.3 hook & server scripting api (groovy)

166

7.1.5 Benutzergruppen (UserGroup/UserOrUserGroup)

User / UserOrUserGroup

public final class UserOrUserGroup extends ArchiveObject
{
 public String getDefaultName()
 public String getLongName()
 public String getDisplayName()
 public User getUser()
 public UserGroup getUserGroup()
}

public final class UserGroup extends ArchiveObject
{
 public enum MemberType {DIRECT, RECURSIVE};

 public String getDefaultName()
 public String getName()
 public UserOrUserGroup[] getMembers()
 public UserOrUserGroup[] getMembers(MemberType memberType)
 public boolean isMemberOfGroup (String parentGroupId)
 public boolean isMemberOfGroup (String parentGroupId, MemberType memberType)
 public AuthorizationProfile[] getAuthorizationProfiles()
 public boolean hasAuthorizationProfile(String profileId)
}

import com.dvelop.d3.server.core.D3Interface
import com.dvelop.d3.server.UserGroup
import com.dvelop.d3.server.UserOrUserGroup
import com.dvelop.d3.server.AuthorizationProfile

// Get user object
def userGroup = d3.archive.getUserGroup("GroupId");

println "Show group information for <" + userGroup.name + "> ";

// Get all users and groupy, which are members of the current Group
userGroup.getMembers(UserGroup.MemberType.RECURSIVE).each { userOrGroup ->
 println userOrGroup.id + " - " + userOrGroup.defaultName
}

// Get all right profiles with the current group
userGroup.getAuthorizationProfiles().each { profile ->
 println profile.id + " - " + profile.name
}

d.3 hook & server scripting api (groovy)

167

7.1.6 Wertemengen (PredefinedValueSet)

public final class PredefinedValueSet extends ArchiveObject
{
 public String getName()
 public String getDataType()
 public String getSortFlag()
 public String getValues(int valIdx)
}

d.3 hook & server scripting api (groovy)

168

7.1.7 Eigenschaftsfelder (RepositoryField)

RepositoryField

public final class RepositoryField extends ArchiveObject
{
 public String getName()
 public String getText()
 public String getDataType()
 public boolean getHasPredefinedValues()
 public Integer getPreferedFieldNumber()
 public PredefinedValueSet getPredefinedValueSet()
 public boolean getHasPlausibilityHookFunction()
 public boolean getHasValuesProvidingHookFunction()
 public void provideValuesForValueSet(List<Object> values)
}

7.1.8 Berechtigungsprofil (AuthorizationProfile)

AuthorizationProfile

public final class AuthorizationProfile extends ArchiveObject
{
 public String getName()
}

7.2 d.3 SQL Datenbank (SqlD3Interface)

SqlD3Interface

 public interface SqlD3Interface {
 public int execute(String query, List<Object> params) throws Exception;
 public int execute(String query) throws Exception;
 public GroovyRowResult firstRow(String sqlquery, List<Object> params) throws Exception;
 public GroovyRowResult firstRow(String query) throws Exception;
 public List<GroovyRowResult> executeAndGet(String query, List<Object> params) throws Exception;
 public List<GroovyRowResult> executeAndGet(String query, List<Object> params, int maxRows) throws
 Exception;
 public List<GroovyRowResult> executeAndGet(String query, List<Object> params, int offset, int maxRows)
throws Exception;
 public List<GroovyRowResult> executeAndGet(String query) throws Exception;
 public List<GroovyRowResult> executeAndGet(String query, int maxRows) throws Exception;
 public List<GroovyRowResult> executeAndGet(String query, int offset, int maxRows) throws Exception;
 }

d.3 hook & server scripting api (groovy)

169

Modifizierer und Typ Methode und Beschreibung

int execute(String query, List<Object> params)

Ausführen eines SQL-Kommandos mit Bind-Variablen (z.B.
ein insert oder update Kommando)

int execute(String query)

Ausführen eines SQL-Kommandos ohne Bind-Variablen
(z.B. ein insert oder update Kommando)

GroovyRowResult firstRow(String sqlquery, List<Object> params)

Ausführen eines SQL-SELECT-Kommandos mit Bind-
Variablen.
Nur die erste Zeile der Ergebnismenge wird abgerufen und
zurückgeliefert.

GroovyRowResult firstRow(String query)

Ausführen eines SQL-SELECT-Kommandos ohne Bind-
Variablen.
Nur die erste Zeile der Ergebnismenge wird abgerufen und
zurückgeliefert.

List<GroovyRowResult> executeAndGet(String query, List<Object> params)

Ausführen eines SQL-SELECT-Kommandos mit Bind-
Variablen.
Alle Zeilen der Ergebnismenge werden abgerufen und
zurückgeliefert.

List<GroovyRowResult> executeAndGet(String query, List<Object> params, int
maxRows)

Ausführen eines SQL-SELECT-Kommandos mit Bind-
Variablen.
Die ersten maxRows Zeilen der Ergebnismenge werden
abgerufen und zurückgeliefert.

Hinweis

Die d.3-SQL-Schnittstelle bietet einen einfachen, groovy-konformen Zugriff auf die native

Datenbank-Schnittstelle des d.3-Servers.

Es ist kein JDBC Treiber erforderlich.

d.3 hook & server scripting api (groovy)

170

Modifizierer und Typ Methode und Beschreibung

List<GroovyRowResult> executeAndGet(String query, List<Object> params, int
offset, int maxRows)

Ausführen eines SQL-SELECT-Kommandos mit Bind-
Variablen.
Beginnend mit offset werden maxRows Zeilen aus der
Ergebnismenge abgerufen und zurückgeliefert.

List<GroovyRowResult> executeAndGet(String query)

Ausführen eines SQL-SELECT-Kommandos ohne Bind-
Variablen.
Alle Zeilen der Ergebnismenge werden abgerufen und
zurückgeliefert.

List<GroovyRowResult> executeAndGet(String query, int maxRows)

Ausführen eines SQL-SELECT-Kommandos ohne Bind-
Variablen.
Die ersten maxRows Zeilen der Ergebnismenge werden
abgerufen und zurückgeliefert.

List<GroovyRowResult> executeAndGet(String query, int offset, int maxRows)

Ausführen eines SQL-SELECT-Kommandos ohne Bind-
Variablen.
Beginnend mit offset werden maxRows Zeilen aus der
Ergebnismenge abgerufen und zurückgeliefert.

d.3 hook & server scripting api (groovy)

171

7.3 Client API (D3RemoteInterface)

D3RemoteInterface

 public interface D3RemoteInterface {
 // Parameter
 public Map<String, Object> getImportParams();
 public void setExportParams(Map<String, Object> exportParams);

 // Table
 public Iterable<Map<String,Object>> getImportTable(String[] columnNames);
 public void setExportTable(Iterable<Map<String,Object>> exportTable);
 // File (table binary)
 public ByteBuffer getImportBytes();
 public void setExportBytes(ByteBuffer exportBytes);

 public void setReturnCode(int retCode);

 // d3fc header information
 public String getLanguage();
 public String getFunctionName();
 public String getUserName();
 public String getVersion();
 public String getServerId();
 public String getSourceIpAddress();
 }

Das Interface „D3RemoteInterface“ kann für die Implementierung eigener d3fc API-Funktionen per

Groovy genutzt werden (siehe Kapitel PlugIn Schnittstelle für API Funktionen).

Außerdem kann auf die Kontext-Informationen eines d3fc-Funktionsaufrufs (d3fc Header) zugegriffen

werden. Das heißt wenn eine Hook-Funktion im Kontext einer d.3 API-Funktion ausgeführt wird, dann

kann auf Informationen des API-Aufrufs zugegriffen werden.

Modifizierer und Typ Methode und Beschreibung

Map<String, Object> getImportParams()

Entgegennehmen der Liste der Importparameter des
Aufrufers.
Key der Map = Name des Parameters
Value der Map = Wert des Parameters

void setExportParams(Map<String, Object> exportParams)

Die Liste mit den Rückgabewerten füllen.
Schlüssel in der Map = Name des Parameters
Wert in der Map = Wert des Parameters

d.3 hook & server scripting api (groovy)

172

Modifizierer und Typ Methode und Beschreibung

Iterable<Map<String,Object>> getImportTable(String[] columnNames)

Entgegennehmen aller Werte aus der d3fc-Importtabelle
der Spaltennamen, die per columnNames Liste angegeben
wurden.
Der Spaltenname ist jeweils der Schlüssel in der
zurückgelieferten Map.

void setExportTable(Iterable<Map<String,Object>> exportTable)

Senden der übergebenen Liste von Maps als d3fc-
Exporttabelle.
Der Spaltenname ist jeweils der Schlüssel in der Map.

ByteBuffer getImportBytes()

Entgegennehmen eines binären Objekts vom Aufrufer. (zB.
einer Datei)

void setExportBytes(ByteBuffer exportBytes)

Zurückgeben eines binären Objekts

void setReturnCode(int retCode)

Den Returnwert der API-Funktion festlegen. Wird die
Methode nicht aufgerufen, so ist der Defaultwert
"0" (Erfolg) zurückgeliefert.

String getLanguage()

Sprachkürzel, mit dem die aktuelle API-Funktion aufgerufen
wurde

String getFunctionName()

der Funktionsname der aktuellen API-Funktion

String getUserName()

d.3-Benutzer, der die aktuelle API-Funktion aufgerufen hat

String getVersion()

Client-Versionsinformation des aktuellen API-Aufrufs

String getServerId()

Kürzel des d.3ecm Repositorys des aktuellen API-Aufrufs
(z.B. 'P')

d.3 hook & server scripting api (groovy)

173

Modifizierer und Typ Methode und Beschreibung

String getSourceIpAddress()

Client-IP-Adresse des Aufrufers der aktuellen API-Funktion

import com.dvelop.d3.server.Document1
import com.dvelop.d3.server.DocumentType2
import com.dvelop.d3.server.Entrypoint3
import com.dvelop.d3.server.User4
import com.dvelop.d3.server.core.D3Interface5
 6
public class Test{7
 @Entrypoint(entrypoint = "hook_insert_entry_10") //-----------------------8
 public int showAppId(D3Interface d3, User user, DocumentType docTypeShort, Document doc){9
 10
 d3.log.error("----------->>>>>>>" + d3.remote.getVersion());11
 def appID = d3.remote.getVersion()[0..2];12
 d3.log.error("APP-ID----------->>>>>>>" + appID);13
 return 0;14
 } // end of showAppId15
}// end of Test16

Hinweis

Das Aufrufen von d3fc Calls aus Groovy-Hook-Funktion ist aktuell nicht vorgesehen. Hier sollten

lokale Methoden Aufrufe über das d.3-Interface vorgezogen werden.

d.3 hook & server scripting api (groovy)

174

7.4 Server API Funktionen (ScriptCallInterface)

ScriptCallInterface

public interface ScriptCallInterface {
 // Documents
 public int document_change_type (String doc_type_short, String doc_id, String user_name);
 public int document_delete (String reason, boolean del_from_each_status, boolean del_file_always, String
doc_id, String user_name, boolean del_privileged);
 public String document_get_permission (String doc_id, String user_name);
 public int document_block (boolean block, String user_name, String doc_id);
 public int document_verify (String user_name, String doc_id);
 public int document_transfer (String destination, String new_editor, String change_remark, boolean
 asynchronous, int archiv_index, String user_name, String doc_id);
 public int document_publish_for_web (boolean publish, String doc_id, String user_name);
 // -- Notes
 public int note_add_file(String file_name, String doc_id, String user_id);
 public int note_add_string(String line, String doc_id, String user_id);
 // Links
 public String[] link_get_parents (String doc_id, String user_name);
 public String[] link_get_children (String doc_id, String user_name);
 public int link_documents (String doc_id_parent, String doc_id_child, String user_name, boolean
 folder_definition, boolean use_folder_plan);
 public boolean link_exists (String doc_id_parent, String doc_id_child, boolean test_vice_versa);
 public int link_delete (String doc_id_parent, String doc_id_child, String user_name);
 // dependent files
 public int document_dependent_add (String filename, char doc_status, String doc_ext, String doc_id, String
user_name);
 public int document_dependent_delete (char doc_status, String doc_ext, String doc_id, String user_name);
 public int document_start_lifetime (String doc_id, boolean overwrite_old_date, int life_time_days);
 public int document_set_cache_days (String doc_id, char doc_status, int archive_index, int days_in_cache);
 public int folder_create (Document doc);
 public int document_register_dependent (String doc_id, int archive_index, char doc_status, String
user_group);
 public String document_get_file_path (String doc_id, char doc_status, int archive_index, String user_group,
String dependent_ext);
 public int document_send_to_dsearch (String doc_id, String ocr_file, int version, String dsearch_corpus,
boolean use_existent_ocr_file,
 char doc_status, int archive_index, String user_name);
 public int restore_from_jukebox (char doc_status, int archiv_index, String doc_id, String user_name);
 public int restore_from_history (int aktion_id, String doc_id, String user_name);
 // Right inheritance:
 public int add_inherit_doc_rights (String doc_id, String granter, String grantee, String right_flags, Timestamp
tstamp_expire);
 public int remove_inherit_doc_rights (String doc_id, String user_name, String grantee);
 // Inbox / resubmission
 public int hold_file_send (String recipient, String notice, String doc_id, Timestamp tstamp_acknowledge,
Timestamp tstamp_remember,
 boolean expand_groups, boolean ignore_checkout, Timestamp date_activate, char type, String sender,
int chain_id, boolean remove_immediately,
 boolean inherit_class_rule, Timestamp inherit_class_tstamp, byte inherit_class_right, boolean
 check_write_access);

d.3 hook & server scripting api (groovy)

175

 public String[] hold_file_find (String recipient, String doc_id, String user_name);
 public int hold_file_delete (long chain_id, Byte sent_received, boolean workflow_only, String recipient,
String doc_id, String user_name);
 // Workflow:
 public int workpath_end_document (String doc_id, String user_name, boolean delete_jobs);
 public int workpath_start_document (String wfl_id, String doc_id, String user_name);
 public int workpath_go_to_next_step (byte exit_value, String next_step_id, String doc_id, String
user_name);
 // Authorization profiles:
 public Long[] roll_get ();
 public String[] roll_get_names ();
 public String[] roll_get_users (long roll_id, String roll_name);
 // TIFF / PDF functions
 public int document_render (String source, String destination, byte render_option, boolean ocr, boolean
 asynchronous,
 boolean replace_doc, boolean overwrite, String doc_id, String user_name, char doc_status, int
 archiv_index, String prio);
 public int tiff_concat (String source, String destination, String source_rdl, String destination_rdl);
 public int document_render_wfl_prot (String doc_id, String user_name);
 // Object properties
 public int object_property_set (String property_name, String object_id, byte object_class_id, String
property_value);
 // Lock token
 public int lock_token_acquire (String object_id, String object_name, String token, String object_info, int ttl,
String user_name);
 public int lock_token_release (String object_id, String object_name, String token);
 // Restriction sets:
 public int d3set_add_filter (String user_name, String doc_id, String set_name, String object_id, String filter,
boolean overwrite);
 public int d3set_remove_filter (String user_name, String doc_id, String set_name, String object_id, String
filter);
 public int d3set_remove_set (String user_name, String doc_id, String set_name, String object_id);
 // new from version 8.0:
 // Async jobs
 public int d3async_job_open(String doc_id_ref, String job_type, String user_name);
 public int d3async_job_set_attribute(String attr_name, String attr_value, int attr_type);
 public int d3async_job_set_lin002_attribute(String attr_type, String attr_name, String attr_value);
 public int d3async_job_close();
 // Various / Miscellaneous
 public int regular_expression_test (String regular_expression, String test_value, byte syntax_id, boolean
 case_sensitivity);
 public int send_email (String recipient, String notice, Timestamp date, String doc_id, String user_name,
String body_file, String mail_format, boolean attach,
 char doc_status, int archiv_index, String attach_abh, String attach_file, boolean use_recip_array,
boolean use_cc_array, boolean use_bcc_array);
 }

d.3 hook & server scripting api (groovy)

176

Hinweis

Die Methoden des ScriptCallInterface entsprechen den Funktionen der d.3 server scripting API JPL

(alte Bezeichnung vor Version 8: d.3 Server API).

In der Dokumentation sind alle diese Funktionen mit Parametern und Rückgabewerten

beschrieben. Die dort beschriebenen globalen Variablen werden hier nicht unterstützt.

d.3 hook & server scripting api (groovy)

177

def callScriptFunction(D3Interface d3, Document doc, reposField, def user)
{
 def sqlQuery = "SELECT note FROM notes_table WHERE doc_id = ?";
 def resultRows = d3.sql.executeAndGet(sqlQuery, [doc.id]);

 resultRows.each
 {
 d3.log.info("Add note $it.note to document $doc.caption ");
 d3.call.note_add_string(it.note, doc.id, user.id);
 }
}

import com.dvelop.d3.server.core.D3Interface
import com.dvelop.d3.server.Document

D3Interface d3 = getProperty("d3")

def doc = d3.archive.getDocument("P000000001", "d3user") // Please change the values

doc.type = "APERS"
doc.status = Document.DocStatus.DOC_STAT_RELEASE
doc.editor = "d3user"
doc.setText(1, "Comment text row 1")

doc.field[1] = "folder_create - Attrib 1"
doc.field[2] = "folder_create - Attrib 2"
// ...
doc.field[60][1] = "folder_create - Attrib 60-1"
// ...

def error = d3.call.folder_create(doc)
if (error)
 println "$error within folder creation!"
else
 println "Folder creation successfull!"

Wichtig

Für den Aufruf von "folder_create" wird ein Dokument-Objekt benötigt. Wenn keines als

Parameter zur Verfügung steht, so kann über die "Archive" Schnittstelle ein Dokument-Objekt für

ein existierendes Dokument erzeugt werden.

Dieses wird als Vorlage benutzt und dessen Attribute werden wie gewünscht angepasst.

d.3 hook & server scripting api (groovy)

178

7.5 Config-Parameter (ConfigInterface)

ConfigInterface

 public interface ConfigInterface {
 public String value(String paramName);
 public String value(String paramName, Integer paramIndex);
 }

Über das ConfigInterface können alle d.3 config Parameter abgefragt werden. Mögliche Parameternamen

sind alle Parameter, die in d.3 config angezeigt werden.

D3Interface d3
// Getting the ID of the DBMS and writing it to the log file
def dbServer = d3.config.value("db_server");
d3.log.info("Database: ${dbServer}");

// Get the first hostimport directory
def hostimpDir1 = d3.config.value("HOSTIMP_IMPORT_DIR", 1)

d.3 hook & server scripting api (groovy)

179

•

•

•

•

7.6 Logging (LogInterface)

LogInterface

 public interface LogInterface extends GroovyLogInterface{
 public void critical(Object msg);
 public void error(Object msg);
 public void warn(Object msg);
 public void info(Object msg);
 public void debug(Object msg);
 public boolean isDebugEnabled();
 public void message(Object msg, int logLevel);
 }

7.7 Hook-Eigenschaften (HookInterface)
Einige d.3-Eintrittspunkte besitzen spezifische Eigenschaften, die in der entsprechenden Hook-Funktion

geändert werden können. Diese Hook-Eigenschaften-Schnittstelle dient dazu, diese Eigenschaften

auslesen und ändern zu können.

Wenn solche Eigenschaften existieren, so sind diese in der Beschreibung des d.3-Eintrittspunktes

angegeben. Beispiele dafür sind die Render-Optionen von "hook_rendition_entry_20" oder die E-Mail-

Eigenschaften von "hook_send_email_entry_20".

Aufruf der Methoden in einer Hook-Funktion:

Auslesen eines Eigenschaftswertes: d3.hook.getProperty("Eigenschaftsname")

Ändern eines Eigenschaftswertes: d3.hook.setProperty("Eigenschaftsname", "Eigenschaftswert")

Bei mehrzeilige Eigenschaften entsprechend:

Auslesen des ersten Wertes einer Mehrfacheigenschaft: d3.hook.getProperty("Eigenschaftsname",

1)

Ändern des zweiten Wertes einer Mehrfacheigenschaft: d3.hook.setProperty("Eigenschaftsname",

2, "Eigenschaftswert")

Hinweis

Des Weiteren ist die Groovy-Methode println() gemappt auf LogInterface.info(), so dass an jeder

Stelle im Groovy-Code einfach per println() in das d.3-Log geschrieben werden kann.

d.3 hook & server scripting api (groovy)

180

HookInterface

 public interface HookInterface {
 public String getProperty (String propName);
 public String getProperty (String propName, int propIndex);
 public void setProperty (String propName, String propValue);
 public void setProperty (String propName, int propIndex, String propValue);
 }

7.8 Fehlerbehandlung (D3Exception)

D3Exception

package com.dvelop.d3.server.exceptions;

public class D3Exception extends RuntimeException

 public class AmbitiousResultException extends D3Exception
 public class ConnectionError extends D3Exception
 public class GroovyAPIFunctionException extends D3Exception
 public class GroovyAPIFunctionRuntimeException extends D3Exception
 public class GroovyHookException extends D3Exception
 public class GroovyHookRuntimeException extends D3Exception
 public class InvalidDateFormatException extends D3Exception
 public class InvalidFormatException extends D3Exception
 public class InvalidInputException extends D3Exception
 public class InvalidParameterException extends D3Exception
 public class ObjectNotFoundByIdException extends D3Exception
 public class ReferenceToUnknownObjectException extends D3Exception
 public class SQLException extends D3Exception
 public class TimeoutException extends D3Exception
 public class UnconvertableException extends D3Exception
 public class NullValueException extends D3Exception

d.3 hook & server scripting api (groovy)

181

7.9 Storagemanager

StorageManagerInterface

 public interface StorageManagerInterface {
 public void addFileToReload(String docId, int fileId);
 public void addFileToReload(String docId, int fileId, String dependentExtension);
 public void addFileToReload(String fileName); // Not document related file

 public void addFileToReload(Document doc); // All files for the document
 public void addFileToReload(PhysicalVersion physVers);
 public void addFileToReload(DependentFile depFile);

 public void setNumberOfFilesPerJob(int value);
 public void setSMThreadsToUse(int value);
 public void setReloadToCachedDocs(boolean value);
 public void setMoveFilesToDocsDir(boolean value);

 public String getReloadPrefix();
 public int reloadFiles();
 }

7.10 d.3-Systemeigenschaften
Die d.3-Schnittstelle definiert folgende Systemeigenschaften als Java System Properties:

Property-Name Beschreibung Beispielwerte

"d3.server.home" Das aktuelle d.3 server-
Programmverzeichnis

"D:\d3\d3server.prg"

"d3.server.version" Die d.3 server-Versionsnummer "08.01.00.05"

"d3.server.systemUser" Der Systembenutzername des
aktuellen d.3 server-Prozesses

"D3Server", "D3Async", "hostimp",
"Master"

"d3.repository.uuid" Die Archive-UUID des d.3-
Repositorys

"8be6de08-d009-4c2b-
a33d-38a3a6458617"

Diese können abgefragt werden per Aufruf: System.getProperty("Property-Name")

d.3 hook & server scripting api (groovy)

182

import javax.swing.JOptionPane1
import javax.swing.UIManager2
 3
def scriptRequireD3Version = "08.01.00.19"4
 5
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());6
 7
if (System.getProperty("d3.server.version") < scriptRequireD3Version)8
{9
 showMessageDialog("This script requires d.3 server version <i>${scriptRequireD3Version}</i> or
later!", "Check d.3 server version")

10

 return11
}12
 13
def showMessageDialog(String messageHtml, String title)14
{15
 JOptionPane.showMessageDialog(null, "<html>" + messageHtml + "</html>", title,
JOptionPane.ERROR_MESSAGE);

16

}17

d.3 hook & server scripting api (groovy)

183

8 Debugging
Um Groovy-Code debuggen zu können, muss der Java Remote Debugging Support in d.3 config aktiviert

werden (Einstellung Java Remote Debugging (JAVA_REMOTE_DEBUGGING) unter Java/Groovy).

Dadurch wird die Java Virtual Machine beim Laden durch die d.3-Server-Prozesse im Debugmodus

gestartet.

Anschließend ist es möglich, sich per Remote Java Debugger mit einem d.3-Server-Prozess zu verbinden,

um die darin ausgeführten Groovy Hooks zu debuggen.

Für die Kommunikation wird Port 43400 benutzt. Da jeder d.3-Prozess eine eigene Java Virtual Machine

(JVM) startet, werden die benutzten Ports hochgezählt.

Der erste mit aktiviertem JAVA_REMOTE_DEBUGGING gestartete Prozess öffnet Port 43400, der zweite

Port 43401 und so weiter.

Der ermittelte Port wird beim Start der JVM per Meldung Java Remote Debugging Port in das d.3-Log

ausgegeben.

Wie Remote Debugging aus Eclipse heraus verwendet werden kann, wird auf der Seite Remote-Debugging

mit Eclipse beschrieben.

8.1 Remote Debugging mit Eclipse
Häufig müssen Sie während der Entwicklung von Hook-Funktionen Fehler finden und beheben. Neben der

klassischen Variante, alle relevanten Variablen in das d.3 Log zu schreiben, können Sie auch "Remote

Debugging" verwenden. Dabei öffnet jeder d.3-Server-Prozess einen Port, zu dem Sie sich mit Eclipse

verbinden und ganz genau den Funktionsablauf kontrollieren können.

Der erste d.3-Server-Prozess, der startet, verwendet den Port 43400, der zweite Prozess verwendet 43401

und so weiter.

Hinweis

Die JVM wird von d.3 On-Demand beim ersten Zugriff auf Groovy-Code gestartet und steht damit

i.d.R. noch nicht direkt nach Prozess-Start zur Verfügung.

Hinweis

Dadurch wird die Java Virtual Machine beim Laden durch die d.3-Server-Prozesse im Debugmodus

gestartet.

Die JVM wird von d.3 On-Demand beim ersten Zugriff auf Groovy-Code gestartet und steht damit

i.d.R. noch nicht direkt nach Prozess-Start zur Verfügung.

d.3 hook & server scripting api (groovy)

184

1.

2.

3.

4.

5.

6.

Beachten Sie, dass auch d.3 async- und d.3 Hostimport-Prozesse Remote Debugging unterstützen.

Beachten Sie außerdem, dass ein Archiv üblicherweise durch mehrere Server-Prozesse bedient wird. Das

hat zur Folge, dass Sie sicherstellen müssen, zum korrekten Serverprozess verbunden zu sein. Der

einfachste Weg, dies zu gewährleisten, ist, nur einen d.3 Server-Prozess auszuführen.

Um Remote Debugging zu verwenden, gehen Sie die folgenden Schritte durch:

Aktivieren Sie in d.3 admin > d.3 config > Java/Groovy > Java Remote Debugging.

In Ihrem Eclipse-Projekt wählen Sie Run > Debug Configurations.

Erstellen Sie eine neue Remote Java Application.

Geben Sie bei den Connection Properties die Adresse des zu debuggenden Systems an.

Wählen Sie Debug, um das Remote Debugging zu starten.

Sie können jetzt in Ihrem Quelltext Breakpoints setzen, an denen die Ausführung unterbrochen

wird, sodass Sie den Ablauf manuell prüfen und fortführen können.

Wichtig

Während des Remote Debugging kann der d.3-Serverprozess keine anderen Aufgaben verarbeiten.

Es sollte daher niemals im Produktivbetrieb Remote Debugging durchgeführt werden.

d.3 hook & server scripting api (groovy)

185

1.

2.

3.

4.

8.2 Remote Debugging mit IntelliJ IDE
Auf dieser Seite werden die notwendigen Schritte beschrieben, um Groovy Hooks eines d.3 Server

Prozesses mit Hilfe von IntelliJ IDEA zu debuggen.

Hinzufügen der Debugkonfiguration

Wählen Sie über das Dropdown-Menü für Laufkonfiguration Edit Configurations... aus.

Wählen Sie in dem neu geöffneten Fenster über + (1) eine neue Remote-Konfiguration (2) aus.

Tragen Sie nun die Verbindungsdaten zu dem d.3-Applikationsserver ein, auf dem die Hooks und die

d.3-Server-Prozesse ausgeführt werden.

Dazu werden Adresse (1) oder FQDN benötigt, sowie der Debug-Port des d.3-Server-Prozesses (2).

Hinweis

Das Thema "Debugging" im Detail zu beschreiben überschreitet den Umfang dieser

Dokumentation. Sie können aber in Fachliteratur sowie im Internet umfangreiche Informationen zu

dem Thema finden.

d.3 hook & server scripting api (groovy)

186

5.

1.

2.

3.

4.

5.

Abschließend wählen Sie das Projekt-Modul aus IntelliJ aus (3), welches Ihr Hook-Projekt enthält.

Durchführen des Debugging

Setzen Sie an gewünschten Codezeilen Breakpoints durch einen Linksklick der Maus neben der

Zeilennummer.

Stoppen Sie alle d.3-Server-Prozesse

Starten Sie einen einzigen d.3-Server-Prozess neu.

Aktivieren Sie das Remote Debugging in IntelliJ IDEA.

Bei einem Aufruf der Hooks/Skripte werden nun die Breakpoints erreicht und pausieren den

Prozess zur Analyse.

d.3 hook & server scripting api (groovy)

187

•

•

•

•

Hinweise zum Debugging

Hinweise zur Debug-Option finden sich auf der Seite Debugging.

Während des Debuggings ist das d.3-System nicht in der Lage andere Jobs zu verarbeiten.

Zum Thema Debugging verweisen wir auf gängige Fachliteratur.

Anleitungen zum Debugging unter IntelliJ IDEA finden sich beim Hersteller JetBrains: https://

www.jetbrains.com/idea/documentation/

Hinweis

Starten Sie erst das Server Interface. Im Log können Sie nachschauen, welcher Port vom

Serverprozess gerade belegt wurde. Suchen Sie einfach nach "Remote Debugging". Eine Logzeile

könnte bspw. folgendermaßen aussehen:

04.04 14:46:47,695 D3SRV_P 68B85950 : Java Remote Debugging Port: 43403

Diesen Port müssen Sie in der Konfiguration hinterlegen. Starten Sie danach das Debugging und

führen den Hook oder das Skript aus.

https://www.jetbrains.com/idea/documentation/
https://www.jetbrains.com/idea/documentation/

d.3 hook & server scripting api (groovy)

188

9 Groovy-Grundlagen

Interessante Links

Groovy-Dokumentation

http://www.groovy-lang.org/

http://www.groovy-lang.org/style-guide.html

http://grails.asia/groovy-list-tutorial-and-examples

Einführung in die Sprache Groovy

http://www.javabeat.net/introduction-to-groovy-scripting-language/

Tutorials

https://www.timroes.de/2015/06/27/groovy-tutorial-for-java-developers/

http://mrhaki.blogspot.de/

z.B. verschiedene Möglichkeiten um in Listen oder Maps nach Einträgen zu suchen:

http://mrhaki.blogspot.de/2009/10/groovy-goodness-finding-data-in.html

Coole deutsche Einführung in Groovy

http://www.oio.de/public/java/groovy/groovy-einfuehrung.htm

http://www.oio.de/public/java/groovy-closures-artikel.htm

Groovy vs. Java

http://www.groovy-lang.org/differences.html

Hinweis

Dies ist kein Groovy-Tutorial oder eine Dokumentation der Sprache, sondern eine Aufstellung von

ein paar Grundlagen, welche vielleicht interessant sind und den Einstieg erleichtern.

http://www.groovy-lang.org/
http://www.groovy-lang.org/style-guide.html
http://grails.asia/groovy-list-tutorial-and-examples
http://www.javabeat.net/introduction-to-groovy-scripting-language/
https://www.timroes.de/2015/06/27/groovy-tutorial-for-java-developers/
http://mrhaki.blogspot.de/
http://mrhaki.blogspot.de/2009/10/groovy-goodness-finding-data-in.html
http://www.oio.de/public/java/groovy/groovy-einfuehrung.htm
http://www.oio.de/public/java/groovy-closures-artikel.htm
http://www.groovy-lang.org/differences.html

d.3 hook & server scripting api (groovy)

189

9.1 Variablen und Strings

Variablen definieren

Variablen können mit Groovy mittels dynamic typing über das Schlüsselwort def definiert werden.

Natürlich kann in Groovy auch mit den gängigen Java-Typen gearbeitet werden.

Was hat ein GString mit Strings zu tun?

Mittels Groovy können Variablen innerhalb eines Strings aufgelöst werden. Dazu werden die Variablen mit

einem $-Zeichen vorangestellt in den String integriert. Dieses Konzept nennt man dann GString.

Hinweis

Die Ausgabe von Inhalten kann mittels des Befehls println erfolgen. Im Kontext d.3 wird dieser

Befehl als Infomeldung im Logfile ausgegeben. Es kann aber auch direkt mit der Log-Funktion

"d.log.info(..)" gearbeitet werden.

Hinweis

Hierbei sollten Sie nie ein und die selbe Variable für unterschiedliche Typen nutzen!

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
 4
D3Interface d3 = getProperty("d3");5
 6
def x = 42; 7
d3.log.info("$x --> " + x.getClass()); 8
 9
x = "Hello World"; 10
d3.log.info("$x --> " + x.getClass()); 11
// Output: 12
// 30.11 09:44:48,258 Master 10080CD8 D3B: 42 --> class java.lang.Integer 13
// 30.11 09:44:48,258 Master 10080CD8 D3B: Hello World --> class java.lang.String14

d.3 hook & server scripting api (groovy)

190

Man kann auch auf einzelne Teilstrings innerhalb dieser Schreibweise zugreifen, dazu muss aber dann mit

geschweiften Klammern gearbeitet werden. Über eine ähnliche Schreibweise, wie man zum Zugriff auf

Array-Elemente nutzt, kann in Groovy auch auf einzelne Buchstaben innerhalb eines Strings zugegriffen

werden.

Mehrzeilige Strings

In Groovy können Strings über mehrere Zeilen definiert werden, dazu werden dann am Anfang und Ende

drei Anführungszeichen benötigt.

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
D3Interface d3 = getProperty("d3");4
 5
def x = "World"; 6
d3.log.info("Hello, $x");7
 8
// Output: 9
// 30.11 09:44:48,258 Master 10080CD8 D3B: Hello, World10

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
D3Interface d3 = getProperty("d3");4
 5
def firstName = "Douglas"; 6
def name = "Adams"; 7
d3.log.info("Hello, ${firstName[0]}. $name");8
 9
// Output: 10
// 30.11 09:44:48,285 Master 10080CD8 D3B: Hello, D. Adams11

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
D3Interface d3 = getProperty("d3");4
 5
def s = """This is 6
a multiline 7
string""";8
 9
d3.log.info(s);10
// Output: 11
// 30.11 09:50:34,925 Master 10080CD8 D3B: This is 12
// 30.11 09:50:34,925 Master 10080CD8 D3B: a multiline 13
// 30.11 09:50:34,925 Master 10080CD8 D3B: string14

d.3 hook & server scripting api (groovy)

191

9.2 Bedingungen
Im Vergleich mit Java gibt es hier nicht viele Unterschiede, aus diesem Grund werden an dieser Stelle nur

die Besonderheiten erwähnt.

Save Navigation Operator

Soll innerhalb einer Objektstruktur ein Wert überprüft werden, muss auch geprüft werden ob die

einzelnen Elemente der Struktur ungleich null sind. Dies kann auf zwei Wegen erfolgen:

1.

if(company.getContact() != null && company.getContact().getAddress() != null &&
company.getContact.getAddress().getCountry() == Country.NEW_ZEALAND) { ... }

2.

if(company.getContact()?.getAddress()?.getCountry() == Country.NEW_ZEALAND) { ... }

Wenn also das Objekt selbst oder eine der Bestandteile nicht vorhanden ist, wird einfach null

zurückgegeben und keine Fehlermeldung.

Elvis-Operator

In Groovy gibt es auch eine komprimierte Schreibweise für ein If-Statement welches wie folgt genutzt

werden kann; dabei kommt nach dem "?" der Wahr-Zweig und nach dem ":" der Falsch-Zweig.

Möchten Sie nun nur dann einen anderen Wert zuweisen, wenn die überprüfte Variable nicht gesetzt ist,

können Sie auch mit einer verkürzten Schreibweise arbeiten.

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
D3Interface d3 = getProperty("d3");4
 5
def testValue = null;6
def name = testValue != null ? testValue : "default"; 7
d3.log.info("Normal -->" + Name);8
// Output 9
// 10.12 10:58:23,238 Master 15041A9C D3B: Normal -->default10

d.3 hook & server scripting api (groovy)

192

Switch-Statement

Im Gegensatz zu Java ist Groovy im Switch-Statement nicht auf numerische Werte begrenzt. Folgendes

Beispiel verdeutlicht den Sachverhalt.

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
D3Interface d3 = getProperty("d3");4
 5
def testValue = null;6
def name = testValue ?: "default"; 7
d3.log.info("Elvis -->" + Name);8
// Output 9
// 10.12 10:58:23,239 Master 15041A9C D3B: Elvis -->default10

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
D3Interface d3 = getProperty("d3");4
 5
def testValue = "ABC";6
switch(testValue){7
 case 100: // Integer 8
 d3.log.info("The number 100");9
 break;10
 case "ABC": // String11
 d3.log.info("The string ABC");12
 break;13
 case Long: // Class 14
 d3.log.info("A Long value");15
 break ;16
 case ['alpha','beta','gamma']: // List 17
 d3.log .info("alpha, beta or gamma");18
 break;19
 case {it > -0.1 && it < 0.1}: // Closure20
 d3.log.info("A number near zero");21
 break;22
 case null: // null23
 d3.log.info("An empty value ");24
 break;25
 case ~/Groov.*/ : // Regulare Expression26
 d3.log.info("Begins with Groov");27
 break;28
 default:29
 d3.log.info("Something completely different");30
}31

d.3 hook & server scripting api (groovy)

193

9.3 Schleifen
Schleifen sind hier ebenfalls mit den Java-Basics identisch. Hier gibt es zusätzlich noch das Konzept der

"Closures", welches im nachfolgenden Kapitel kurz beschrieben wird. Da geschweifte Klammern für

"Closures" reserviert sind erfolgt die initiale Befüllung von Listen/Arrays mit eckigen Klammern.

For-Schleife

Each-Statements

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
D3Interface d3 = getProperty("d3");4
 5
def testList = ["This", "is", "example", "content"]; 6
int n = 0;7
// A classic for-statement 8
for(n = 0; n < testList.size(); n++){9
 d3.log.info("$n. For --> " + testList[n]); 10
}11
// Output 12
// 10.12 12:33:11,996 Master 15041A9C D3B: 0. For --> This 13
// 10.12 12:33:11,997 Master 15041A9C D3B: 1. For --> is 14
// 10.12 12:33:11,997 Master 15041A9C D3B: 2. For --> example 15
// 10.12 12:33:11,997 Master 15041A9C D3B: 3. For --> content 16
 17
 18
// A for-statement with collection19
n = 0;20
for(def item in testList){21
 d3.log.info((n++) + ". For-(Collection) --> " + item);22
}23
 24
// Output 25
// 10.12 12:33:11,998 Master 15041A9C D3B: 0. For-(Collection) --> This 26
// 10.12 12:33:11,999 Master 15041A9C D3B: 1. For-(Collection) --> is 27
// 10.12 12:33:11,999 Master 15041A9C D3B: 2. For-(Collection) --> example 28
// 10.12 12:33:11,999 Master 15041A9C D3B: 3. For-(Collection) --> content 29

d.3 hook & server scripting api (groovy)

194

Ein Collection-Statement

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
D3Interface d3 = getProperty("d3");4
 5
// Each-Statement 6
n = 0; 7
testList.each{8
 d3.log.info((n++) + ". Each --> " + it); 9
}10
// Output 11
// 10.12 12:33:12,008 Master 15041A9C D3B: 0. Each --> This 12
// 10.12 12:33:12,008 Master 15041A9C D3B: 1. Each --> is 13
// 10.12 12:33:12,008 Master 15041A9C D3B: 2. Each --> example 14
// 10.12 12:33:12,009 Master 15041A9C D3B: 3. Each --> content 15
// Each-Statement with index 16
testList.eachWithIndex { val, idx ->17
 d3.log.info(idx + ". Each with index --> " + val); 18
}19
// Output 20
// 10.12 12:33:12,010 Master 15041A9C D3B: 0. Each with index --> This 21
// 10.12 12:33:12,010 Master 15041A9C D3B: 1. Each with index --> is 22
// 10.12 12:33:12,010 Master 15041A9C D3B: 2. Each with index --> example23
// 10.12 12:33:12,010 Master 15041A9C D3B: 3. Each with index --> content 24

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
D3Interface d3 = getProperty("d3");4
 5
n = 0; 6
def newList = testList.collect { it; } 7
newList.each{8
 d3.log.info((n++) + ". Collect --> " + it); 9
} 10
// Output 11
// 10.12 12:33:12,012 Master 15041A9C D3B: 0. Collect --> This 12
// 10.12 12:33:12,012 Master 15041A9C D3B: 1. Collect --> is 13
// 10.12 12:33:12,012 Master 15041A9C D3B: 2. Collect --> example 14
// 10.12 12:33:12,012 Master 15041A9C D3B: 3. Collect --> Content15

d.3 hook & server scripting api (groovy)

195

9.4 Closures
Closures sind kleine, unbenannte Funktionen welche direkt an eine Variable gebunden werden.

Eine Variable mit einer Funktion

Closures mit Variablen mit festen Typen

Closure mit einer untypisierten Variable

Closure, bei einer Variable kann auch die implizite Variable "it" genutzt werden

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
D3Interface d3 = getProperty("d3");4
 5
// Print Hello world -- 6
def optionOne = { 7
 d3.log.info("Option 1: Hello World"); 8
} 9
optionOne();10
 11
// Output 12
// 09.12 13:30:35,082 Master 12041F98 D3B: Option 1: Hello World13

// Closures with parameters ------------------------------------- 1
def power = { int x, int y ->2
 return Math.pow(x, y); } 3
d3.log.info("Option 2: " + power(2, 3));4
 5
// Output 6
// 09.12 13:30:35,093 Master 12041F98 D3B: Option 2: 8.07

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
D3Interface d3 = getProperty("d3");4
 5
// Closure with one dynamic typing variable -------------------- 6
def optionThree = { what -> 7
 d3.log.info(what); } 8
optionThree "Option 3: Hello World"; // same as optionThree("Option 3: Hello World");9
 10
// Output 11
// 09.12 13:30:35,094 Master 12041F98 D3B: Option 3: Hello World12

d.3 hook & server scripting api (groovy)

196

Closure mit explizit KEINER Variablen

Soll ein Wert zurückgegeben werden, kann dies auch ohne Return erfolgen, dann wird der letzte

Wert zurückgegeben.

9.5 Datenbankanbindung
Zugriff auf eine d.3-interne Datenbanktabelle (d.3-SQL-Datenbank)

Der Zugriff auf Datenbanktabellen welche sich innerhalb der d.3-Datenbank befinden erfolgt über d.3-

SQL-Schnittstelle, welche einen einfachen Zugriff auf die Daten zur Verfügung stellt.

Beispiel - Zugriff auf die d.3 interne Datenbank-Schnittstelle:

// Closure with an implizit argument -------------------------- 1
def optionFour = { d3.log.info(it); } 2
optionFour "Option 4: Hello World"; // same as optionFour("Option 4: Hello World");3
 4
// Output 5
// 09.12 13:30:35,095 Master 12041F98 D3B: Option 4: Hello World6

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
D3Interface d3 = getProperty("d3");4
 5
// Closure without any argument -------------------------------- 6
def optionFive = { -> 7
 d3.log.info("Option 5: This closure does not take any arguments."); } 8
optionFive(); 9
// Output 10
// 09.12 13:30:35,095 Master 12041F98 D3B: Option 5: This closure does not take any arguments.11

package com.dvelop.scripts;1
import com.dvelop.d3.server.core.D3Interface;2
 3
D3Interface d3 = getProperty("d3");4
 5
// Optional return value --------------------------------------- 6
def square = { it * it }; 7
d3.log.info("Option 6: " + square(4)); 8
 9
// Output 10
// 09.12 13:30:35,127 Master 12041F98 D3B: Option 6: 16 11

d.3 hook & server scripting api (groovy)

197

1.

2.

3.

Kommentare zu den einzelnen Blöcken

Zur Nutzung der d.3-SQL-Schnittstelle wird die Bibliothek D3 benötigt und muss bei Bedarf

importiert werden. Da über den d3-server-interface-Aufruf implizit die Variable d3 zur Verfügung

steht, kann diese über die Funktion getProperty("d3") im Skript zur Verfügung stellt werden und

steht damit auch währender Programmierung zur Codevervollständigung bereit.

Über diverse Implementierungen/Funktionen kann nun ein SQL-Statement gegen die

Datenbanktabelle abgeschickt werden. Die Ergebnisse werden dabei in einer Map-Struktur

übergeben.

Mittels zum Beispiel eines Each-Statements können die Daten weiterverarbeitet werden.

Specials

Und für solche häufigen Abfragen, bei denen man nur einen Treffer hat oder nur einen haben will, existiert

die Methode firstRow().

Allerdings noch besser lesbar und damit besserer Code ist – mit AS highestNo im SQL-Kommando:

Zugriff auf eine externe Datenbank

//(1) 1
package com.dvelop.scripts;2
import com.dvelop.d3.server.core.D3Interface;3
 4
D3Interface d3 = getProperty("d3");5
 6
//(2)7
def resultRows = d3.sql.executeAndGet("SELECT name FROM CustomerData");8
//(3)9
resultRows.each{ println it.name; }10

def sqlQuery = "SELECT max(product_count) as value FROM productDB WHERE product_id = ? ";1
def sqlParams = [4711];2
def firstRow = d3.sql.firstRow (sqlQuery, sqlParams);3
int max_no = firstRow[0] + 1; 4

def sqlQuery = "SELECT max(product_count) as value FROM productDB WHERE product_id = ? ";1
def sqlParams = [4711];2
def firstRow = d3.sql.firstRow (sqlQuery, sqlParams) 3
int max_no = firstRow.highestNo + 1;4

Hinweis

Für den Zugriff auf externe Datenbanken müssen die benötigten JDBC-Treiber bei den

Datenbankherstellern heruntergeladen werden und bereitgestellt werden. Dann kann über die

Standard-SQL-Schnittstelle eine Verbindung zur Datenbank aufgebaut werden und ein SQL-

Statement abgesetzt werden.

d.3 hook & server scripting api (groovy)

198

1.

2.

3.

4.

Beispiel - Zugriff auf eine externe Datenbank:

Kommentare zu den einzelnen Blöcken

Zur Nutzung der d.3-SQL-Schnittstelle für externe Datenbankzugriffe, wird die Standard-Groovy-

Bibliothek SQL benötigt und muss bei Bedarf importiert werden.

Um nun auf eine externe Datenbank zugreifen zu können, muss eine Verbindung zur Datenbank

hergestellt werden. Dazu wird hier ebenfalls eine Standard-Groovy-Funktion zum Aufbau einer

Verbindung newInstance genutzt. Weitere Details zu den Parametern können den gängigen

Dokumentationen zu den Datenbanken bzw. zu Groovy nachgeschlagen werden.

Über diverse Implementierungen/Funktionen kann nun ein SQL-Statement gegen die

Datenbanktabelle abgeschickt werden. Die Ergebnisse werden dabei in einer Map-Struktur

übergeben.

Mittels zum Beispiel eines Each-Statements können die Daten weiterverarbeitet werden.

//(1)1
import groovy.sql.Sql;2
//(2)3
def dbConnection = Sql.newInstance("jdbc:sqlserver://localhost:1433;databaseName=Name",
"User", "Password");

4

//(3)5
def resultRows = dbConnection.rows("SELECT name FROM CustomerData");6
//(4)7
resultRows.each{ println it.name; }8

d.3 hook & server scripting api (groovy)

199

9.6 d.3-Specials

9.6.1 d.3-Konfigurationsparameter auslesen
Möchten Sie zum Beispiel ein Groovy-Skript sowohl in der Test-Umgebung als auch in der

Produktivumgebung nutzen, können Sie über die Abfrage von Konfigurations- und Serverparametern das

Skript so programmieren, dass ein Skript ohne Anpassungen in beiden Welten funktioniert. Eine

Portierung bzw. Anpassung ist damit dann nicht mehr notwendig. Eine Dokumentation der möglichen

Parameter ist in den relevanten d.3-Dokumentationen zu finden. Anbei ein kleines Beispiel.

Ab Version 8.1 können Parameter wie die aktuelle API-Sprache oder die APP-Version auch in Groovy

ermittelt werden.

d3.log.error(d3.conf.value("d3fc_server_id")); // Server id1
d3.log.error(d3.conf.value("d3fc_server_name")); // Server name 2
d3.log.error(d3.conf.value("db_server")); // Database type3
d3.log.error(d3.conf.value("CUR_60ER_FIELD_NR"));// Current max . sizce of 60-ies feild4
 5
d3.log.error(d3.natives.getd3fcLanguage()); // Get the current language6
 7
// Output8
// 08.12 15:25:39,090 Master 130C1308 D3B: B 9
// 08.12 15:25:39,090 Master 130C1308 D3B: localhost 10
// 08.12 15:25:39,090 Master 130C1308 D3B: MSQL 11
// 08.12 15:25:39,091 Master 130C1308 D3B: 10012
 13

import com.dvelop.d3.server.Document1
import com.dvelop.d3.server.DocumentType2
import com.dvelop.d3.server.Entrypoint3
import com.dvelop.d3.server.User4
import com.dvelop.d3.server.core.D3Interface5
public class d3RemoteInterfaceExample{6
 7
 @Entrypoint(entrypoint = "hook_insert_entry_10") //-----------------------8
 public int getCustomerDataForInvoice(D3Interface d3, User user, DocumentType docTypeShort,
Document doc){

9

 d3.log.error("App-Version: " + d3.remote.getVersion());10
 d3.log.error("APP-ID: " + d3.remote.getVersion()[0..2]);11
 d3.log.error("App-Language: " + d3.remote.getLanguage());12
 return 0;13
 } // end of getCustomerDataForInvoice14
 15
}// end of d3RemoteInterfaceExample16

d.3 hook & server scripting api (groovy)

200

9.6.2 Klasse für globale Konstanten
Im JPL wurde mit globalen Konstanten die Referenzierung auf Datenbank-Positionen der erweiterten

Eigenschaften sprechend gestaltet und zentral gesteuert.

Dies funktioniert aktuell nicht über eine separate Package-Struktur sondern kann nur im Root-Verzeichnis

mit allen notwendigen Dateien genutzt werden.

Dazu werden hier exemplarisch zwei Klassen angelegt, welche dann innerhalb der Hook-Funktionen

referenziert werden.

Klasse für die Dok-Dat-Feld-Positionen

Klasse für die Dokument- und Aktenarten

Da die Klassen, im gleichen Verzeichnis abgelegt wurden, können diese nun in den Hook-Dateien /

-Funktionen genutzt werden.

Nutzung der globalen Konstanten innerhalb einer Hook-Funktion

class DDF {1
 static final int FIRSTNAME = 4; // DB positions2
 static final int LASTNAME = 5;3
 static final int STATE_ID = 6; 4
}// end of DDF5

class DT {1
 static final String INVOCIE = "DRECH"; // Doc types 2
 static final String ORDER = "DBEST";3
 static final String EMPLOYEE_FOLDER = "APERS"; // Folder types4
}// end of DT5

d.3 hook & server scripting api (groovy)

201

import com.dvelop.d3.server.Document1
import com.dvelop.d3.server.DocumentType2
import com.dvelop.d3.server.Entrypoint3
import com.dvelop.d3.server.User4
import com.dvelop.d3.server.core.D3Interface5
 6
class D3Hooks {7
 8
 @Entrypoint(entrypoint = "hook_insert_entry_10")9
 public int myEntryPoint(D3Interface d3, User d3User, DocumentType docTypeShort, Document
doc){

10

 d3.log.error("+++ MyGlobal-Test+++++ " + DDF.FIRSTNAME);11
 d3.log.error("+++ MyGlobal-Test+++++ ${DDF.LASTNAME}");12
 d3.log.error("+++ MyGlobal-Test+++++ $DDF.STATE_ID");13
 14
 d3.log.error("+++ MyGlobal-Test+++++ " + DT.INVOICE);15
 d3.log.error("+++ MyGlobal-Test+++++ " + DT.ORDER);16
 d3.log.error("+++ MyGlobal-Test+++++ " + DT.EMPLOYEE_FOLDER);17
 return 0; 18
 }// end of myEntryPoint19
}// end of D3Hooks20

d.3 hook & server scripting api (groovy)

202

•

10 Groovy-Hook-Beispiele

10.1 Eintrittspunkte

Die unterschiedlichen Eintrittstypen, benötigen dann eine definierte Anzahl von Parametern in einer

vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-Funktion immer

das d.3 Objekt übergeben.

Eine Kette von Eintrittspunkten

Wird zum Beispiel ein Dokument über die Verzeichnisüberwachung (Hostimport) abgelegt, wird auf der

Server-Seite folgende Kette von Eintrittspunkten abgearbeitet:

hook_hostimp_entry_10 →hook_insert_entry_10 → hook_insert_entry_20 →

hook_insert_exit_10 → hook_insert_exit_20 → hook_insert_exit_30

•

•

•

•

•

•

Hinweis

Für die Nutzung von Eintrittspunkten müssen diese Bibliotheken importiert werden:

Globale d.3-Bibliotheken

import com.dvelop.d3.server.core.D3Interface

import com.dvelop.d3.server.Document

importcom.dvelop.d3.server.User

import com.dvelop.d3.server.DocumentType

Spezifische Bibliotheken für die Eintrittspunkte

import com.dvelop.d3.server.Entrypoint

import com.dvelop.d3.server.Condition

Hinweis

Man kann auf jede beliebigen Hook-Eintrittspunkt beliebig viele Funktionen definieren! Man

könnte also Lösungsbezogen, den Eintrittspunkt "hook_insert_entry_10" für die Überprüfung der

Bestellnummer einer Rechnung nutzen, die Personalnummer eines Urlaubsantrag überprüfen oder

die Daten eines Auftrags vervollständigen.

Hinweis

Für die Hook-Eintrittspunkte Wertemengen, Validierung und Suche muss immer am Ende noch ein

zusätzlicher Parameter vom Typ "Document" angehängt werden.

d.3 hook & server scripting api (groovy)

203

•

Wird zum Beispiel ein Dokument per manuellen Import abgelegt, wird auf der Server-Seite folgende Kette

von Eintrittspunkten abgearbeitet:

hook_validate_import_entry_10 → hook_insert_entry_10 → hook_insert_entry_20 →

hook_insert_exit_10 → hook_insert_exit_20 → hook_insert_exit_30

Wird nun eine Funktion zu einem Eintrittspunkt mit einem Fehler bzw. einem Wert ungleich 0 beendet

bzw. liefert einen Wert ungleich 0 zurück; wird die komplette Kette unterbrochen und das Dokument wird

zum Beipsiel nicht archiviert.

d.3 hook & server scripting api (groovy)

204

1.

2.

3.

4.

10.1.1 InsertEntry_10
Hallo Welt!

Dazu wird eine Hook-Funktion für den Eintrittspunkt "hook_insert_entry_10" hinterlegt, welche die

Kunden-Nummer überprüft.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der groovyhook.jar-Datei.

Bereitstellung einer eigenen Klasse vom Typ "public", wobei "public" im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen erfolgt, über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen, benötigen dann eine definierte Anzahl von Parametern in

einer vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-

Hinweis

Szenario:

Wird ein Dokument im d.3-System abgelegt, soll im d.3 Log-File einfach nur eine Fehlermeldung

"Hallo Welt" angezeigt werde.

package com.dvelop.hooks;1
 2
//(1)3
// Global d.3 libraries 4
import com.dvelop.d3.server.core.D3Interface;5
import com.dvelop.d3.server.Document;6
import com.dvelop.d3.server.User;7
import com.dvelop.d3.server.DocumentType;8
 9
// Libraries to handle the different hook types 10
import com.dvelop.d3.server.Entrypoint;11
 12
//(2)13
public class D3Hooks{14
//(3) 15
 @Entrypoint(entrypoint = "hook_insert_entry_10") //-----------------------16
//(4) 17
 public int insertEntry_10(D3Interface d3, User user, DocumentType docTypeShort, Document
doc){

18

//(5) 19
 d3.log.error("Hello world!");20
//(6) 21
 return 0;22
 } // end of insertEntry_1023
} // end of D3Hooks24

d.3 hook & server scripting api (groovy)

205

5.

6.

Funktion immer das d.3-Objekt übergeben. Zusätzlich wird als letzter Parameter noch ein

Parameter vom Type "Document" benötigt.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

Die Funktion wird mit einem Return-Wert "0" beendet.

Kontrolle und Ergänzung von Dokumenteigenschaften bei Import

Dazu wird eine Hook-Funktion für den Eintrittspunkt "hook_insert_entry_10" hinterlegt, welche die

Kunden-Nummer überprüft.

Hinweis

Szenario:

Während der Ablage eines Dokumentes im d.3-System soll die Eigenschaft Kunden-Nummer gegen

eine Datenbank kontrolliert und bei Bedarf die restlichen Kundendaten automatisch ergänzt

werden.

Die benötigten Kundendaten in diesem Beispiel liegen dabei in einer Datenbank-Tabelle welche

innerhalb der d.3-Datenbank hinterlegt wurde damit können die Daten über eine einfache SQL-

Implementierung abgerufen werden.

d.3 hook & server scripting api (groovy)

206

1.

2.

3.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ "public", wobei "public" im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen erfolgt, über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

package com.dvelop.hooks;1
 2
//(1)3
// Global d.3 libraries 4
import com.dvelop.d3.server.core.D3Interface;5
import com.dvelop.d3.server.Document;6
import com.dvelop.d3.server.User;7
import com.dvelop.d3.server.DocumentType; 8
 9
// Libraries to handle the diferent hook types 10
import com.dvelop.d3.server.Entrypoint;11
 12
//(2)13
public class D3Hooks{14
//(3)15
@Entrypoint(entrypoint = "hook_insert_entry_10") 16
//(4)17
public int insertEntry_10(D3Interface d3, User user, DocumentType docTypeShort, Document
doc){

18

//(5)19
 if(docTypeShort.id == "DINV"){20
 def customerID = doc.field[14];21
//(6)22
 if(customerID != ""){23
 def sqlQuery = "SELECT name, street, zipCode, city FROM CustomerData WHERE
customerNo = ? ";

24

 def sqlParams = [customerID];25
 def resultRows = d3.sql.executeAndGet(sqlQuery, sqlParams);26
//(7)27
 if(resultRows.size() == 1){ 28
 doc.field["Street"] = resultRows[0].street;29
 doc.field["ZipCode"] = resultRows[0].zipCode.toString(); // ATTENTION!30
 doc.field[10] = resultRows[0].city;31
 return 0;32
 }33
(8)34
 else {35
 return -1;36
 }37
 } 38
 }39
 return 0;40
 } // end of insertEntry_10 41
} // end of D3Hooks42

d.3 hook & server scripting api (groovy)

207

4.

5.

6.

7.

8.

Die unterschiedlichen Eintrittstypen, benötigen dann eine definierte Anzahl von Parametern in

einer vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-

Funktion immer das d.3-Objekt übergeben. Zusätzlich wird als letzter Parameter noch ein

Parameter vom Type "Document" benötigt.

Nun kann innerhalb der Funktion für einen bestimmten Dokumenttyp eine Validierung

vorgenommen werden, dabei wird der Dokumenttyp über die Eigenschaft

pDocTypeShort.id eingeschränkt. In diesem Beispiel wird die Einschränkung mittels IF-Statement

vorgenommen, hier kann aber auch über eine "Condition" die Einschränkung auf einen oder

mehrere Dokumenttypen vorgenommen werden.

Nachdem die Kunden-Nummer aus den Dokumenteigenschaften ermittelt wurde, kann nun die

Kunden-Nummer gegen die Datenbank geprüft werden. Liegt dabei die Datenbanktabelle im d.3-

DB-Adressraum kann mittels der d.3-SQL-Implementierung die native Datenbank-Schnittstelle des

d.3-Servers genutzt werden.

Da im Kontext des Eintrittspunktes hook_insert_entry_10 alle Dokumenteigenschaften sowohl

lesend als auch schreibend zur Verfügung stehen, können nun die zusätzlichen Kundendaten

ergänzt werden. Hierbei können die Eigenschaften über die Datenbank-Position oder direkt und

sprechend mit der Eigenschaftenbezeichnung referenziert werden. Hier sollte man sich natürlich

auf eine Art der Referenzierung einigen.

Konnte keine gültige Kunden-Nummer ermittelt werden, erfolgt eine Rückgabe mit einem

Returnwert ungleich "0" und damit wird dann an dieser Stelle die Verarbeitungskette unterbrochen.

d.3 hook & server scripting api (groovy)

208

1.

2.

10.1.2 InsertExit_20
Eintrag in den Dokumentnotizen

Dazu wird eine Hook-Funktion für den Eintrittspunkt hook_insert_exit_20 hinterlegt; der Eintrag wird

dann mittels Groovy-Server-API geschrieben..

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der groovyhook.jar-Datei.

Bereitstellung einer eigenen Klasse vom Typ "public", wobei "public" im Kontext Groovy auch

weggelassen werden kann.

Hinweis

Szenario:

Wurde eine Rechnung erfolgreich importiert, kann automatisch ein Eintrag in die Dokument-

Notizen geschrieben werden.

Details zu den hier verwendeten Groovy-Server-API-Funktionen können den spezifischen

Dokumentationen entnommen werden.

package com.dvelop.hooks;1
 2
//(1)3
// Global d.3 libraries 4
import com.dvelop.d3.server.core.D3Interface; 5
import com.dvelop.d3.server.Document; 6
import com.dvelop.d3.server.User; 7
import com.dvelop.d3.server.DocumentType; 8
 9
// Libraries to handle the diferent hook types 10
import com.dvelop.d3.server.Entrypoint;11
//(2)12
public class D3Hooks{13
//(3)14
 @Entrypoint(entrypoint = "hook_insert_exit_20") 15
//(4)16
 @Condition(doctype = ["DINV"]) 17
//(5)18
 public int insertExit_20(D3Interface d3, Document doc, def fileDest, def importOK, 19
 User user, DocumentType docTypeShort){20
//(6)21
 def returnValue = 0;22
 returnValue = d3.call.note_add_string("Hello World!", doc.id, user.id);23
//(7)24
 return 0;25
 } // end of insertExit_2026
} // end of D3Hooks27

d.3 hook & server scripting api (groovy)

209

3.

4.

5.

6.

7.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen erfolgt, über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

In diesem Beispiel wird nun die Einschränkung mittels Condition auf einen oder mehrere

Dokumenttypen vorgenommen.

Die unterschiedlichen Eintrittstypen, benötigen dann eine definierte Anzahl von Parametern in

einer vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-

Funktion immer das d.3-Objekt übergeben.

Nun kann mittels der Groovy-Server-API-Funktion "note_add_string" ein Eintrag zur Dokumentnotiz

hinzugefügt werden.

War die Aktion erfolgreich wird ein Return-Wert gleich "0" zurückgegeben.

Weiterleitung an einen Sachbearbeiter

Dazu wird eine Hook-Funktion für den Eintrittspunkt "hook_insert_exit_20" hinterlegt und über einer

Groovy-Server-Funktion das Dokument einem User in den Postkorb gelegt.

Hinweis

Szenario:

Wurde eine Rechnung erfolgreich importiert, kann diese direkt einer Gruppe oder einem User in

den Postkorb gelegt werden.

d.3 hook & server scripting api (groovy)

210

1.

2.

3.

4.

5.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der groovyhook.jar-Datei.

Bereitstellung einer eigenen Klasse vom Typ "public", wobei "public" im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen erfolgt, über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

In diesem Beispiel wird nun die Einschränkung mittels "Condition" auf einen oder mehrere

Dokumenttypen vorgenommen.

Die unterschiedlichen Eintrittstypen, benötigen dann eine definierte Anzahl von Parametern in

einer vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-

Funktion immer das d.3-Objekt übergeben.

package com.dvelop.hooks;1
 2
//(1)3
// Global d.3 libraries 4
import com.dvelop.d3.server.core.D3Interface;5
import com.dvelop.d3.server.Document;6
import com.dvelop.d3.server.User;7
import com.dvelop.d3.server.DocumentType;8
 9
// Libraries to handle the different hook types 10
import com.dvelop.d3.server.Entrypoint;11
import com.dvelop.d3.server.Condition; 12
 13
// Special libraries 14
import groovy.sql.Sql;15
import java.sql.Timestamp;16
 17
//(2)18
public class D3Hooks{19
//(3) 20
 @Entrypoint(entrypoint = "hook_insert_exit_20")21
//(4)22
 @Condition(doctype = ["DINV"])23
//(5) 24
 public int insertExit_20(D3Interface d3, Document doc, def fileDest, def importOK, 25
 User user, DocumentType docTypeShort){26
 // Define variables ---27
 def returnValue = 0;28
 Timestamp currentDate = new Date().toTimestamp();29
//(6) 30
 returnValue = d3.call.hold_file_send(user.id, "Invoice: " + doc.getField("RechnungsNr"), 31
 doc.id, currentDate, currentDate, false , true , 32
 currentDate, "", "dvelop", 0, false , false , currentDate, 0, false);33
//(7)34
 return 0;35
 } // end of insertExit_20 36
} // end of D3Hooks37

d.3 hook & server scripting api (groovy)

211

6.

7.

Nun kann mittels der Groovy-Server-API-Funktion "note_file_send" das aktuelle Dokument in die

Wiedervorlage eines d.3-Users, in diesem Beispiel desjenigen welcher das Dokument archiviert hat,

gesendet werden.

War die Aktion erfolgreich wird ein Return-Wert gleich "0" zurückgegeben.

Update von anderen Dokumenten abhängig vom aktuellen

Dazu wird eine Hook-Funktion für den Eintrittspunkt "hook_insert_exit_20" hinterlegt und über einer

Groovy-Server-Funktion das Dokument einem User in den Postkorb gelegt.

Hinweis

Szenario:

Eine Akte wird im d.3-System angelegt und es sollen Daten aus der Akte in andere Dokumente

übernommen werden.

d.3 hook & server scripting api (groovy)

212

//(1)1
import com.dvelop.d3.server.core.D3Interface2
import com.dvelop.d3.server.core.D3Interface.ArchiveInterface3
 4
import com.dvelop.d3.server.Document5
import com.dvelop.d3.server.DocumentType6
import com.dvelop.d3.server.User7
 8
import com.dvelop.d3.server.Condition9
import com.dvelop.d3.server.Entrypoint10
 11
//---12
/**13
* Add function to entry point hook_insert_exit_30 for handling change in personal data14
*15
* @param d3, doc, fileDest, importOK, user, docType --> Server definied16
* @return integer as result value17
*/18
//(2)19
@Entrypoint(entrypoint="hook_insert_exit_30")20
@Condition(doctype = ["PERSA"])21
public int entryUpdatePersonalData(D3Interface d3, Document docObj, def fileDest, def
 importOK, User user, DocumentType docType) {

22

 int retValue;23
//(3)24
 retValue = updatePersData(d3, doc, user);25
 return retValue;26
} // end of entryUpdatePersonalData27
 28
//---29
/**30
* Function for updating function 31
*32
* @param d3 D3Interface object33
* @param doc Document object34
* @param login current user object35
* @return integer as result value36
*/37
//(4)38
public int updatePersData(D3Interface d3, Document doc, User login) {39
 40
 Document docObjRef;41
//(5)42
 ArchiveInterface archiveObj = d3.getArchive();43
 44
//(6)45
 def currentDocId = doc.id;46
 def client = doc.field[DDF.MANDANT]; // DDF... = Database position in ext. class47
 def persNumber = doc.field[DDF.EMPLOYEE_NO];48
 def persName = doc.field[DDF.EMPLYOEE_NAME];49
//(7) 50
 def sqlQuery = "SELECT ";51
 def resultRows = d3.sql.executeAndGet(sqlQuery);52
 def childDocObj;53
//(8) 54

d.3 hook & server scripting api (groovy)

213

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der groovyhook.jar-Datei.

Bereitstellung einer Funktion auf dem Einspungpunkt "hook_insert_exti_20".

Aufruf der separaten Funktion zur Aktualisierung der Personaldaten.

Funktionsdefinition der Update-Funktion.

Bereitstellung eines ArchivInteface-Objects zwecks Generierung der Document-Objekte.

Die benötigten Daten werden aud dem aktuellen Dokument ausgelesen, hierzu wurde hier

exemplarisch eine extn. Klasse zur Definition von globalen Konstanten genutzt.

An dieser Stelle könnte nun über die bereitgestellten Eigenschaften eine Suche weiterer

Dokument-IDs zur aktuellen Personal-Nr. ermittelt werden; dies kann mittels SQL-Statement

erfolgen.

Über eine Schleife werden dann alle erkannten Dokumente bearbeitet.

Für jede Dokument-ID wird ein Dokument-Objekt erzeugt.

Die neue Eigenschaft wird zugewiesen.

Danach erfolgt ein Update der Daten, hier ist der zweite Parameter sehr wichtig, dieser sorgt mit

"true" dafür das eine nachgelagerte Hook-Validierung nicht stattfindet, "false" hätte hier den

gegenteiligen Effekt.

 resultRows.each {55
 childRef = it.doku_id;56
//(9)57
 childDocObj = archiveObj.getDocument(childRef, login.id);58
//(10)59
 docObjRef.field[DDF.EMPLOYEE_NAME] = persName;60
//(11)61
 docObjRef.updateAttributes(login.id, true); // !!!!62
 }63
 64
 return 0;65
} // end of updatePersDataddd66

d.3 hook & server scripting api (groovy)

214

10.1.3 UpdateAttribEntry_20
Kontrolle und Ergänzung von Dokument-Eigenschaften bei der Aktualisierung

Dazu wird eine Hook-Funktion für den Eintrittspunkt "hook_upd_attrib_entry_20" hinterlegt, welche die

Kunden-Nummer überprüft.

Hinweis

Szenario:

Wird die Dokumenteigenschaft "Kunden-Nummer" aktualisiert sollen hier ebenfalls die Daten

gegen eine Datenbank kontrolliert und bei Bedarf die restlichen Kundendaten automatisch

ergänzt werden. Die benötigten Kundendaten in diesem Beispiel liegen dabei in einer ext.

Datenbank und müssen über eine ext. Datenbankverbindung abgerufen werden.

d.3 hook & server scripting api (groovy)

215

package com.dvelop.hooks;1
 2
//(1)3
// Global d.3 libraries 4
import com.dvelop.d3.server.core.D3Interface;5
import com.dvelop.d3.server.Document;6
import com.dvelop.d3.server.User;7
import com.dvelop.d3.server.DocumentType;8
 9
// Libraries to handle the different hook types 10
import com.dvelop.d3.server.Entrypoint;11
import com.dvelop.d3.server.Condition; 12
 13
// Special libraries 14
import groovy.sql.Sql; 15
 16
//(2)17
public class D3Hooks{18
//(3)19
 @Entrypoint(entrypoint = "hook_upd_attrib_entry_20") 20
 @Condition(doctype = "DRECH")21
//(4)22
 public int updateAttributeEntry_20(D3Interface d3, Document doc, User user, DocumentType
docTypeShort,

23

 DocumentType docTypeShortNew){24
//(5)25
 return getCustomerData(d3, doc);26
 } // end of updateAttributeEntry_2027
 public int getCustomerData(D3 d3, Document doc){28
//(6)29
 def customerID = doc.field[14];30
 if(customerID != ""){31
 def dbConnection = Sql.newInstance("jdbc:sqlserver://localhost:1433;databaseName=Name", 32
 "User", "Password");33
 def sqlQuery = "SELECT name, street, zipCode, City FROM CustomerData WHERE
customerNo = ? ";

34

 def sqlParams = [customerID];35
 def resultRows = dbConnection.rows(sqlQuery, sqlParams);36
 if(resultRows.size() == 1){37
//(7)38
 doc.field[8] = resultRows[0].street;39
 doc.field[9] = resultRows[0].zipCode.toString(); // ATTENTION!40
 doc.field[10] = resultRows[0].city;41
 return 0;42
 }43
 else {44
//(8)45
 return -1;46
 }47
 }48
 return 0;49
 } // end of getCustomerData50
} // end of D3Hooks51

d.3 hook & server scripting api (groovy)

216

1.

2.

3.

4.

5.

6.

7.

8.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der groovyhook.jar-Datei.

Bereitstellung einer eigenen Klasse vom Typ "public", wobei "public" im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen erfolgt, über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt. Des weiteren können an dieser Stelle auch über eine sog. Condition auch

Einschränkungen auf die Dokumenttypen vorgenommen werden.

Die unterschiedlichen Eintrittstypen, benötigen dann eine definierte Anzahl von Parametern in

einer vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-

Funktion immer das d.3-Objekt übergeben.

Für die Hook-Eintrittspunkte Wertemengen, Validierung und Suche muss immer am Ende noch ein

zusätzlicher Parameter vom Typ "Document" angehängt werden.

Nun kann innerhalb der Funktion für einen bestimmten Dokumenttyp eine Validierung

vorgenommen werden, dabei wird der Dokumenttyp über die Eigenschaft

pDocTypeShort.id eingeschränkt.

Nachdem die Kunden-Nummer aus den Dokumenteigenschaften ermittelt wurde, kann nun die

Kunden-Nummer gegen die Datenbank geprüft werden. Dabei wird in diesem Beispiel eine

Verbindung zu einer externen MS-SQL-Datenbank vorgenommen und die Daten aus dieser

Datenbank ermittelt. Details zu der notwendigen Konfiguration können den relevanten

Dokumentationen entnommen werden.

Da im Kontext des Eintrittspunktes hook_upd_attrib_entry_20 alle Dokumenteigenschaften

sowohl lesend als auch schreibend zur Verfügung stehen, können nun die zusätzlichen

Kundendaten ergänzt werden.

Konnte keine gültige Kunden-Nummer ermittelt werden, erfolgt eine Rückgabe mit einem

Returnwert ungleich "0" und damit wird dann an dieser Stelle die Verarbeitungskette unterbrochen.

d.3 hook & server scripting api (groovy)

217

10.1.4 Eine Klasse, mehrere Hook-Funktionen
Wie können mehrere Hook-Funktionen in einer Klasse zusammengeführt werden? Eine Antwort könnte

mit dem folgenden Skript-Beispiel gegeben werden.

d.3 hook & server scripting api (groovy)

218

// (1) Global d.3 libraries --
import java.sql.Timestamp;
import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Entrypoint;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.core.D3Interface;
import groovy.sql.Sql;

//---
// (2)
public class D3EntryPoints{
 // (3)
 @Entrypoint(entrypoint = "hook_insert_entry_10") //-----------------------
 // (4)
 public int getCustomerDataForInvoice(D3Interface d3, User user, DocumentType docTypeShort, Document
doc){
 // (5)
 if(docTypeShort.id == "DINV"){
 d3.log.error("Hello world!");
 //return getCustomerData(d3, doc);
 }
 return 0;
 } // end of getCustomerDataForInvoice
 // (6)
 @Entrypoint(entrypoint = "hook_insert_exit_20") //------------------------
 @Condition(doctype = ["DINV"])
 public int sendInvoice(D3Interface d3, Document doc, def fileDest, def importOK, User user, DocumentType
docTypeShort){
 // Define variables ---
 def returnValue = 0;
 Timestamp currentDate = new Date().toTimestamp();
 // Add entry to document note ---
 returnValue = d3.call.note_add_string("Hello World!", doc.id, user.id);
 // SEND to user ---
 returnValue = d3.call.hold_file_send(user.id, "Invoice: " + doc.field[14], doc.id, currentDate, currentDate,
false, true, currentDate, "", "dvelop", 0, false, false, currentDate, 0, false);
 } // end of sendInvoice

 // (7)
 @Entrypoint(entrypoint = "hook_validate_import_entry_10") //--------------
 @Condition(doctype = ["DINV"])
 public int justDummy(D3Interface d3, User user, DocumentType docTypeShort, Document doc){
 return 0;
 } // end of justDummy

 // (8)
 @Entrypoint(entrypoint = "hook_upd_attrib_entry_20") //-------------------
 public int updateCustomerDataForInvoice(D3Interface d3, Document doc, User user, DocumentType
docTypeShort, DocumentType docTypeShortNew){
 if(docTypeShort.id == ["DINV"]){
 def oldDocOnj = d3.archive.getDocument(doc.id); // TODO alte inhalte
 return getCustomerData(d3, doc);

d.3 hook & server scripting api (groovy)

219

1.

2.

3.

4.

5.

6.

 }
 return 0;
 } // end of updateCustomerDataForInvoice

 // (9) --
 public int getCustomerData(D3Interface d3, Document doc){

 def customerID = doc.field[1];
 if(customerID != null && customerID != ""){
 def dbConnection = Sql.newInstance("jdbc:sqlserver://Teilnehmer-VM.training.d-velop.de\
\SQLEXPRESS:0;databaseName=SolutionsDB", "dEcsFormsDBUser", "Academy1!");
 def sqlQuery = "SELECT name, street, zipCode, city FROM CustomerData WHERE customerNo = ? ";
 def sqlParams = [customerID];
 def resultRows = dbConnection.rows(sqlQuery, sqlParams);
 //def resultRows = d3.sql.executeAndGet(sqlQuery, sqlParams);

 if(resultRows.size() == 1){

 doc.field["Straße"] = resultRows[0].street.trim();
 doc.field["Postleitzahl"] = resultRows[0].zipCode.toString(); // ATTENTION!
 doc.field[5] = resultRows[0].city.trim();
 doc.field[1] = resultRows[0].name.trim();

 doc.setText(1, "Inhalt von Groovy");
 return 0;
 }
 else{
 return -1;
 }
 }
 return 0;
 } // end of getCustomerData
} // end of d3Hooks

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt über eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benötigen dann, die in der Groovy-Hook-Dokumentation dafür

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt übergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natürlich mit einem "sprechenden" Namen vergeben werden.

In diesem Beispiel wird der Dokumenttyp innerhalb der Funktion über ein If-Statement kontrolliert

und für die Dokumentart Rechnung eine entsprechende Aktion ausgeführt.

Ein weiteres Beispiel wird auf den Eintrittspunkt "InsertExit_20" und die Dokumentart Rechnung

"DRECH" realisiert. In diesem Beispiel wird über die Server-API-Calls "note_add_string" bei Eingang

d.3 hook & server scripting api (groovy)

220

7.

8.

9.

•

einer Rechnung ein Eintrag in den Dokument-Notizen vorgenommen. Zusätzlich wird die Rechnung

noch mittels des Befehls "hold_file_send" an einen Sachbearbeiter gesendet.

Für einen weiteren Eintrittspunkt hook_validate_import_entry_10 wird hier einfach mal eine

Funktion registriert, welche aber aktuell noch keine Aufgabe übernimmt.

Wird, zum Beispiel in einer Rechnung, die Kundennummer geändert, müssen auch die relevanten

Kundendaten in der Rechnung ebenfalls angepasst werden, dazu wird der Eintrittspunkt

hook_upd_attrib_entry_20 mit einer Funktion verlingt.

Da die Ermittlung der Kundendaten an mehreren Stellen benötigt wird, wurde die Funktion an

dieser Stelle implementiert.

10.2 Validierung

Nützliche Links

Regular-Expression Online Tool: https://regex101.com/

Validierung einer Bestellnummer auf ein gültiges Format

Zur Realisierung wird auf die Dokumenteigenschaft Bestellnummer eine Funktion zur Validierung

definiert.

•

•

Wichtig

Für die Nutzung einer Validierung müssen diese Bibliotheken importiert werden:

Globale d.3-Bibliotheken

import com.dvelop.d3.server.core.D3Interface

Spezifische Bibliotheken für die Validierung

import com.dvelop.d3.server.Validate

Hinweis

Szenario:

Die Bestellnummer soll immer dem Format "Zwei Zahlen-Zwei Buchstaben-Fünf Zahlen" (/[0-9]{2}-

[a-zA-Z]{2}-[0-9]{5}/) genügen. Natürlich kann man das direkt in der d.3 Administration

konfigurieren, aber als Beispiel um die Funktionsweise für die Validierung zu demonstrieren, ist es

ebenfalls geeignet.

https://regex101.com/

d.3 hook & server scripting api (groovy)

221

1.

2.

3.

 Das Ganze, kann man auch, dank Groovy, etwas kürzer realisieren.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der groovyhook.jar-Datei.

Bereitstellung einer eigenen Klasse vom Typ "public", wobei "public" im Kontext Groovy auch

weggelassen werden kann.

Um nun eine Groovy-Funktion für eine Validierung einer Dokumenteigenschaft nutzen zu können

erfolgt, über eine Groovy-Annotation mit den vorgegebenen Werten, eine Registrierung der

Funktion zu einer, in d.3 admin konfigurierten, Validierungsfunktion.

package com.dvelop.hooks;1
 2
//(1)3
//Global d.3 libraries 4
import com.dvelop.d3.server.core.D3Interface;5
 6
// Libraries to handle the diferent hook types 7
import com.dvelop.d3.server.Validation; 8
//(2)9
public class D3Validate{10
//(3)11
 @Validation(entrypoint = "checkOrderNumber") 12
//(4)13
 public int checkOrderNumber(D3Interface d3, def currentValue, Document doc){14
//(5)15
 def tmpValue = currentValue;16
 def matchFlag = (tmpValue ==~ /[0-9]{2}-[a-zA-Z]{2}-[0-9]{5}/);17
//(6)18
 return(matchFlag ? 0 : -1);19
 } // end of checkOrderNumber20
}// end of D3Validate21

package com.dvelop.hooks;1
 2
//(1)3
// Global d.3 libraries 4
import com.dvelop.d3.server.core.D3Interface;5
 6
// Libraries to handle the diferent hook types 7
import com.dvelop.d3.server.Validation; 8
//(2)9
 public class D3Validate{ 10
//(3)11
 @Validation(entrypoint = "checkOrderNumber")12
//(4)13
 public int checkOrderNumber(D3Interface d3, def currentValue){14
//(6) 15
 return((currentValue ==~ /[0-9]{2}-[a-zA-Z]{2}-[0-9]{5}/) ? 0 : -1);16
 } // end of checkOderNumber17
}// end of D3Validate18

d.3 hook & server scripting api (groovy)

222

4.

5.

6.

Die Validierungs-Funktion benötigt dann eine definierte Anzahl von Parametern in einer

vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-Funktion

immer das d.3-Objekt übergeben.

Innerhalb der Funktion kann nun der übergebene Wert überprüft werden, im Beispiel mittels eines

regulären Ausdrucks.

Entspricht der Wert einem gültigen Wert, kann eine 0 ansonsten eine 1 zurückgegeben werden.

d.3 hook & server scripting api (groovy)

223

•

•

•

10.3 Wertemengen
In diesem Bereich werden die Möglichkeiten dargestellt, Wertemengen wie folgt bereitzustellen:

als statische Liste

aus internen d.3-Datenbanktabellen

als dynamische abhängige Datenbanktabelle

Benötigte Bibliotheken für die Wertemengen

Einfache statische Wertemenge

•

•

•

•

•

•

Wichtig

Für die Implementierung von Wertemengen müssen diese Bibliotheken importiert werden:

Globale d.3-Bibliotheken

import com.dvelop.d3.server.core.D3Interface

import com.dvelop.d3.server.Document

Import com.dvelop.d3.server.User

import com.dvelop.d3.server.DocumentType

Spezifische Bibliotheken für die Wertemengen

import com.dvelop.d3.server.ValueSet

import com.dvelop.d3.server.RepositoryField

Wichtig

Die Sortierung wird hier aus dem Script übernommen und nicht, wie über eine JPL-Wertemenge,

vom Client wieder verfälscht.

Hinweis

Natürlich macht es wenig Sinn eine statische Liste über ein Skript bereitzustellen, dies kann man

viel besser über die d.3-Administration! Aber für ein einfaches Beispiel kann man hier mit einer

statischen Wertemenge starten.

d.3 hook & server scripting api (groovy)

224

1.

2.

3.

4.

5.

6.

7.

8.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der groovyhook.jar-Datei.

Import der speziellen Bibliothek zur Unterstützung der Wertemengen.

Import einer speziellen Bibliothek zur Rücklieferung der Wertemenge an den Benutzer.

Definition einer öffentlichen Klasse.

Registrierung des Eintrittspunktes für die Wertemenge.

Definition der speziellen Funktion zur Ermittlung der Wertemenge.

Definition der statischen Wertemenge.

Bereitstellung der Wertemenge für den User.

Einfache statische Wertemenge aus einer Datenbanktabelle

Sinnvoller ist es, die Wertemengen aus internen bzw. ext, Datenquellen zu ermittelt; dies wird in diesen

Beispielen vorgestellt.

Interne d.3-Datenbanktabelle

//(1) Global d.3 libraries ---1
import com.dvelop.d3.server.core.D3Interface;2
import com.dvelop.d3.server.Document;3
import com.dvelop.d3.server.User;4
import com.dvelop.d3.server.DocumentType;5
 6
//(2) Libraries to handle the different hook types -----------------------------7
import com.dvelop.d3.server.ValueSet;8
 9
//(3) Special libraries --10
import com.dvelop.d3.server.RepositoryField;11
 12
//(4) Define the needed class ---13
class SimpleValueSet{14
 //(5) Combine to the value set entry point -----------------------------------15
 @ValueSet(entrypoint = "customerNumbers")16
 //(6) Define the function --17
 def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType
docType,

18

 int rowNo, int validate, Document doc){19
 20
 //(7) Define static list of customer numbers ------------------------------21
 def customerList = ["4711", "4712", "4713", "4714"];22
 23
 //(8) Prepare List for interaction---24
 if(customerList.size() > 0){25
 reposField.provideValuesForValueSet(customerList);26
 }27
 } // end of getCustomerNumber28
}// end of SimpleValueSet29

d.3 hook & server scripting api (groovy)

225

1.

2.

3.

4.

5.

6.

7.

//(1) Global d.3 libraries ---
Import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;

//(2) Libraries to handle the different hook types -------------------------------
import com.dvelop.d3.server.ValueSet;

//(3) Special libraries --
Import com.dvelop.d3.server.RepositoryField;

//(4) Example for an internal d.3 database table ---------------------------------
class StaticValueSet{
 //(5) Define the value set entry point --
 @ValueSet(entrypoint = "customerNumbers")
 //(6) Define function for the value set ---------------------------------------
 def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType docType,
 int rowNo, int validate, Document doc){

 //(7) Prepare sql statmenet --
 def sqlQuery = "SELECT custoemrNo FROM CustomerData ORDER BY customerNo DESC"; // !! ATTENTION

 //(8) Execute sql statmenet --
 def resultRows = d3.sql.executeAndGet((String) sqlQuery);

 //(9) Prepare list for user interface ------------------------------
 if(resultRows.size() > 0){
 reposField.provideValuesForValueSet(resultRows.collect{ it.customerNo });
 }
 } // end of getCustomerNumber
}// end of StaticValueSet

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Import der speziellen Bibliothek zur Unterstützung der Wertemengen.

Import einer speziellen Bibliothek zur Rücklieferung der Wertemenge an den Benutzer.

Definition einer öffentlichen Klasse.

Registrierung des Eintrittspunktes für die Wertemenge.

Definition der speziellen Funktion zur Ermittlung der Wertemenge.

Definition des SQL-Statements zur Ermittlung der Wertemenge.

Hinweis

In diesem Beispiel werden die Daten aus einer internen d.3-Datenbanktabelle ermittelt, dabei

werden eventuelle Eingaben des Users nicht berücksichtigt.

d.3 hook & server scripting api (groovy)

226

8.

9.

Ausführung des SQL-Statements gegen die interne Datenbank-Tabelle, wird hier über das d.3-

Objekt realisiert.

Darstellung der Wertemenge für den User.

Externe Datenbanktabelle

Hinweis

Wertemengen können auch aus externen Datenbanken ermittelt werden; dieses Beispiel zeigt

einen Lösungsansatz.

d.3 hook & server scripting api (groovy)

227

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

//(1) Global d.3 libraries ---
Import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;
import com.dvelop.d3.server.DocumentType;

//(2) Libraries to handle the different hook types -------------------------------
import com.dvelop.d3.server.ValueSet;

//(3) Special libraries --
Import com.dvelop.d3.server.RepositoryField;

//(4) Example for an external database table -------------------------------------
class StaticValueSet{
 //(5) Define the value set entry point --
 @ValueSet(entrypoint = "customerNumbers")
 //(6) Define the function ---
 def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType docType,
 int rowNo, int validate, Document doc){

 //(7) Prepare database Connection --
 def dbConnection = Sql.newInstance("jdbc:sqlserver:<ServerName>\
\<InstanceName>:0;databaseName=<DatabaseName>", "<User>", „<Password>");

 //(8) Prepare sql statmenet---
 def sqlQuery = "SELECT customerNo FROM CustomerData ORDER BY customerNo DESC"; // !! ATTENTION

 //(9) Execute sql statmenet --
 def resultRows = dbConnection.rows((String) sqlQuery);

 //(10) Prepare lit for user interface -------------------------------------
 if(resultRows.size() > 0){
 reposField.provideValuesForValueSet(resultRows.collect{ it.customerNo });
 }

 } // end of getCustomerNumber
}// end of StaticValueSet

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Import der speziellen Bibliothek zur Unterstützung der Wertemengen.

Import einer speziellen Bibliothek zur Rücklieferung der Wertemenge an den Benutzer.

Definition einer öffentlichen Klasse.

Registrierung des Eintrittspunktes für die Wertemenge.

Definition der speziellen Funktion zur Ermittlung der Wertemenge.

Initialisierung einer externen JDBC-Datenbankverbindung.

Definition des SQL-Statements zur Ermittlung der Wertemenge.

Ausführung des SQL-Statements gegen die interne Datenbank-Tabelle, wird hier über das d.3-

Objekt realisiert.

Darstellung der Wertemenge für den User.

d.3 hook & server scripting api (groovy)

228

Abhängige dynamische Wertemenge aus einer Datenbanktabelle

Bereitstellung einer Kunden-Nummern-Liste

Zur Realisierung wird auf die Dokumenteigenschaft Bestellnummer eine Funktion zur Validierung

definiert.

Hinweis

Szenario:

Es soll eine Wertemengen der Kunden-Nummern aus den Kunden-Datenbanktabelle für die

Dokumenteigenschaft "KundenNr" bereitgestellt werden. Diese soll bei Bedarf über den

eingegebenen PLZ-Bereich dynamisch begrenzt werden können.

d.3 hook & server scripting api (groovy)

229

1.

2.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ "public", wobei "public" im Kontext Groovy auch

weggelassen werden kann.

//(1) Global d.3 libraries --1
import com.dvelop.d3.server.core.D3Interface;2
import com.dvelop.d3.server.Document;3
import com.dvelop.d3.server.User;4
import com.dvelop.d3.server.DocumentType;5
 6
// Libraries to handle the different hook types 7
Import com.dvelop.d3.server.ValueSet;8
 9
// Special libraries 10
Import com.dvelop.d3.server.RepositoryField;11
//(2)12
public class D3ValueSets{13
//(3)14
 @ValueSet(entrypoint = "dsCustomerNumbers")15
//(4)16
 public int getCustomerNumber(D3Interface d3, RepositoryField reposField, User user,
DocumentType docType, int rowNo, int validate, Document doc)

17

 {18
//(5)19
 def zipCode = doc.field[9];20
 def whereClause = "";21
 if(zipCode != ""){22
 whereClause = "WHERE zipCode LIKE '$zipCode%'";23
 } 24
//(6)25
 def sqlQuery = "SELECT customerNo FROM CustomerNo $whereClause ORDER BY
customerNo DESC"; // !! ATTENTION

26

 def resultRows = d3.sql.executeAndGet(sqlQuery);27
//(7)28
 // Long-Version --- 29
 def customerList = [];30
 resultRows.each{31
 customerList.add(it.customerNo);32
 }33
 if(customerList.size() > 0){34
 reposField.provideValuesForValueSet(customerList);35
 } 36
 // Short-Version --37
 if(resultRows.size() > 0){38
 reposField.provideValuesForValueSet(resultRows.collect{ it.customerNo });39
 }40
 41
 return 042
 } // end of getCustomerNumber43
} // end of D3ValueSets 44

d.3 hook & server scripting api (groovy)

230

3.

4.

5.

6.

7.

Um nun eine Groovy-Funktion für Wertemengen-Generierung einer Dokumenteigenschaft nutzen

zu können erfolgt, über eine Groovy-Annotation mit den vorgegebenen Werten, eine Registrierung

der Funktion zu einer, in d.3 admin konfigurierten, Wertemengenfunktion.

Die Wertemengen-Funktion benötigt dann eine definierte Anzahl von Parametern in einer

vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-Funktion

immer das d.3-Objekt übergeben.

Um die Aufgabenstellung zu realisieren, wird nun die Dokumenteigenschaft der PLZ ausgelesen

und bei Bedarf ein "Where"-Bestandteil des SQL-Statements zur Verfügung gestellt.

Da die genutzte Datenbanktabelle innerhalb der d.3-Datenbank angelegt wurde, kann mittels einer

einfachen SQL-Implementierung, siehe hierzu auch das Beispiel für InsertEntry_10, auf die Daten

zugegriffen werden.

Wurden nun Daten zu dem bereitgestellten Postleitzahlen-Bereich gefunden, können diese mittels

der Funktion provideValuesForValueSet() der Dokumenteigenschaft bereitgestellt werden. Hier

wurden zwei unterschiedliche Wege der Implementierung aufgenommen; natürlich sollte nur ein

Weg verwendet werden.

d.3 hook & server scripting api (groovy)

231

10.4 Dokumentklassen

Rechnungen nur von bestimmten Usern bearbeitbar

 Zur Realisierung wird eine neue Dokumentklasse "KundenRechnungen" in der d.3-Administration

angelegt, die benötigte Implementierung ist im folgenden Beispiel dokumentiert.

•

•

•

•

•

Wichtig

Für die Implementierung von Wertemengen müssen diese Bibliotheken importiert werden:

Globale d.3-Bibliotheken

import com.dvelop.d3.server.core.D3Interface

import com.dvelop.d3.server.Document

Import com.dvelop.d3.server.User

import com.dvelop.d3.server.DocumentType

Spezifische Bibliotheken für den Dokumentklassen-Hook

import com.dvelop.d3.server.DocumentClass

Hinweis

Szenario:

Rechnungen sollen nun, abhängig von der 3. Stelle der Kundennummern, nur von bestimmten

Benutzern bearbeitet werden können. Da in der Demo-Umgebung keine entsprechende

Datenverlinkung zwischen User und Kundennummer vorhanden ist, wird die Implementierung hier

exemplarisch mittels einer statischen Zuordnung über ein "Switch"-Statement realisiert.

d.3 hook & server scripting api (groovy)

232

1.

2.

Kommentare zu den einzelnen Blöcken

Import der benötigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ "public", wobei "public" im Kontext Groovy auch

weggelassen werden kann.

package com.dvelop.hooks;1
 2
//(1)3
// Global d.3 libraries4
import com.dvelop.d3.server.core.D3Interface;5
import com.dvelop.d3.server.Document;6
import com.dvelop.d3.server.User;7
import com.dvelop.d3.server.DocumentType;8
 9
// Libraries to handle the different hook types 10
import com.dvelop.d3.server.DocumentClass;11
//(2)12
public class d3DocumentClass{13
//(3)14
 @DocumentClass(entrypoint = "KundenRechnung")15
//(4)16
 pudblic int customerDocClass(D3Interface d3, String value, DocumentType docType, String
userId, Document doc){

17

 // STEP 1: Get customer number 18
 def customerNo = value; 19
 // STEP 2: Get current user 20
 def currentUser = userId; 21
 // STEP 3: Set user depending on the third place in the customer number 22
 def returnFlag = false;23
 def tmpValue = customerNo[2];24
//(5) 25
 switch(tmpValue){26
 case "0":27
 returnFlag = (currentUser == "chef");28
 break;29
 case "1":30
 returnFlag = (currentUser == "smith");31
 break;32
 case "2":33
 returnFlag = (currentUser == "larson");34
 break;35
 case "3":36
 returnFlag = (currentUser == "parker");37
 break;38
 case "4":39
 returnFlag = (currentUser == "funny");40
 break;41
 default:42
 break;43
 }44
 return(returnFlag ? 1 : 0); 45
 } // end of customerDocClass46
} // end of d3DocumentClasss47

d.3 hook & server scripting api (groovy)

233

3.

4.

5.

6.

Um nun eine Groovy-Funktion für Dokumentklassen-Hooks nutzen zu können wird über eine

Groovy-Annotation mit den vorgegebenen Werten eine Registrierung der Funktion zu einer, in d.3

admin konfigurierten, Dokumentklasse vorgenommen..

Die Dokumenklassen-Funktion benötigt dann eine definierte Anzahl von Parametern in einer

vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-Funktion

immer das d.3-Objekt übergeben.

In diesem Beispiel wird nun über eine Switch-Abfrage abhängig von dem dritten Wert der

Kundennummer ein statischer User gesetzt. Hier könnte man natürlich auch mit "Restriction-Sets"

arbeiten.

Je nach dem wie diese Prüfung abgelaufen ist, wird nun eine "1" (erlaubt) oder eine "0" (verweigert)

zurückgegeben.

Wichtig

Bitte beachten Sie hier das Dokumentklassen-Hooks mit viel Vorsicht genutzt werden

sollten, da diese je nach implementierter Funktion, sehr auf die Performance des

Gesamtsystems gehen!

d.3 hook & server scripting api (groovy)

234

Index

A
Abhängige Dateien 21, 23

Akten verknüpfen 108, 109

API-Funktionen 144

ArchiveObject 154

C
ConfigInterface 178

D
d.3 Administration 3

d.3 Eintrittspunkte 20

d.3 hook 20

d.3 Schnittstelle 151

d.3 Server Interface 150

D3Exception 180

D3Interface 151

D3RemoteInterface 173

Debugging 183, 185

DeleteDocument 72, 74

DocumentType 163

DocumentTypeAttribute 164

Dokument löschen 72, 74

Dokument pürfen 43

Dokument prüfen 44

Dokument sperren 94, 95

Dokument suchen 46, 49, 51

Dokumentanlage 30, 32, 34, 35, 37, 38

Dokumentation 4

Dokumente freigeben 39, 41

Dokumente verknüpfen 108, 109

Dokumentfreigabe 39, 41

Dokumentklassen-Hooks 134

Dokumentsuche 46, 49, 51

E
E-Mails senden bei Wiedervorlage 89, 91, 93

Eigenschaftswerte aktualisieren 24, 26, 28

Eigenschaftswerte validieren 102, 104, 106

Einleitung 3

Einspielen neuer Version 52, 54, 56, 57, 59, 61

Entwicklungsumgebung 5, 7

Erstellen von Hook-Projekten 12

G
GetDocumentList 46, 49, 51

Groovy 4

Groovy API-Funktionen 144

Groovy Hooks 3

Groovy-Skripte 150

H
Hook-Projekte 12

Hook-Projekte erstellen 12

HookInterface 180, 181

I
ImportDocument 30, 32, 34, 37, 38

ImportDocumnet 35

ImportNewVersionDocument 52, 54, 56, 57, 59, 61

Impressum 2

K
Konfiguration 3, 5

L
Löschen Dokument 74

Löschen eines Dokuments 72

Löschen von Verknüpfungen 75, 77

LinkDocuments 108, 109

Login 68, 70

LogInterface 179

N
Neue Version einspielen 52, 54, 56, 57, 59, 61

O
Oracle 3

P
PDF-Dokumente bearbeiten 63, 66, 67

PDF-Dokumente erzeugen 63, 66, 67

Postkorb 78, 81

Prüfung Dokument 43, 44

PredefinedValueSet 167

R
Rechtliche Hinweise 2

Redlining 80

ReleaseDocument 39, 41

Remote Debugging 185

RepositoryField 168

S
ScriptCallInterface 177

SearchDocument 46, 49, 51

Senden Wiedervorlage 83, 84, 85, 87

SendHoldFile 78, 81, 83, 84, 85, 87

SignatureInfo 161

Sperren Dokument 94, 95

SqlD3Interface 170

Stammdaten 97

Start 3

Statustransfer 99, 100

Suche Dokument 46, 49, 51

Sun 3

T
TIFF-Dokumente bearbeiten 63, 66, 67

TIFF-Dokumente erzeugen 63, 66, 67

U
Unlink 75, 77

UpdateAttributes 24, 26, 28

User 165

UserGroup 166

UserOrUserGroup 166

V
ValidateAttributes 102, 104, 106

Validieren von Eigenschaftswerten 102, 104, 106

Validierungshooks 122

VerifyDocument 43, 44

Verknüpfungen löschen 75, 77

Voraussetzungen 3

W
Web-Veröffentlichung 111, 112, 113, 115, 116, 118

Wertemengen-Hooks 124

Wiedervorlage E-Mails senden 89, 91, 93

Wiedervorlage senden 83, 84, 85, 87

Workflow 120

WriteRedline 80

	Impressum/ Rechtliche Hinweise
	Einleitung
	Über diese Dokumentation
	Voraussetzungen
	Groovy

	Entwicklungsumgebung
	Eclipse als Entwicklungsumgebung
	Erstellen von Hook-Projekten
	IntelliJ IDEA als Entwicklungsumgebung

	Groovy Hook-Typen
	d.3-Eintrittspunkte
	Abhängige Dateien
	hook_dep_doc_entry_10
	hook_dep_doc_exit_10

	Aktualisieren der Eigenschaftswerte (UpdateAttributes)
	hook_upd_attrib_entry_20
	hook_upd_attrib_exit_10
	hook_upd_attrib_exit_20

	Dokumentanlage (ImportDocument)
	hook_hostimp_entry_10
	hook_insert_entry_10
	hook_insert_entry_20
	hook_insert_exit_10
	hook_insert_exit_20
	hook_insert_exit_30

	Dokumente freigeben (ReleaseDocument)
	hook_release_entry_10
	hook_release_exit_10

	Dokument prüfen (VerifyDocument)
	hook_verify_entry_10
	hook_verify_exit_10

	Dokumentsuche (GetDocumentList/SearchDocument)
	hook_search_entry_05
	hook_search_entry_10
	hook_search_entry_20
	hook_search_exit_30

	Einspielen einer neuen Version (ImportNewVersionDocument)
	hook_new_version_entry_10
	hook_new_version_entry_20
	hook_new_version_entry_30
	hook_new_version_exit_10
	hook_new_version_exit_20
	hook_new_version_exit_30

	Erzeugen/ Bearbeiten von TIFF- oder PDF-Dokumenten
	hook_rendition_entry_10
	hook_rendition_entry_20
	hook_rendition_exit_30

	Login
	hook_val_passwd_entry_10
	hook_val_passwd_exit_10

	Löschen eines Dokuments (DeleteDocument)
	hook_delete_entry_10
	hook_delete_exit_10

	Löschen von Verknüpfungen (Unlink)
	hook_unlink_entry_30
	hook_unlink_exit_10

	Postkorb (SendHoldFile)
	hook_ack_holdfile_exit_10

	Redlining (WriteRedline)
	hook_write_redline_entry_10e
	hook_write_redline_exit_30

	Senden einer Wiedervorlage (SendHoldfile)
	hook_holdfile_entry_10
	hook_holdfile_entry_20
	hook_holdfile_entry_30
	hook_holdfile_exit_10

	Senden von E-Mails bei Wiedervorlage
	hook_send_email_entry_10
	hook_send_email_entry_20
	hook_send_email_exit_10

	Sperren eines Dokuments
	hook_block_entry_10
	hook_block_exit_10

	Stammdaten
	hook_on_user_change_exit_10

	Statustransfer
	hook_transfer_entry_30
	hook_transfer_exit_30

	Validieren von Eigenschaftswerten (ValidateAttributes)
	hook_validate_import_entry_10
	hook_validate_search_entry_10
	hook_validate_update_entry_10

	Verknüpfen von Dokumente bzw. Akten (LinkDocuments)
	hook_link_entry_30
	hook_link_exit_10

	Web-Veröffentlichung
	hook_webpublish_entry_10
	hook_webpublish_entry_20
	hook_webpublish_entry_30
	hook_webpublish_exit_10
	hook_webpublish_exit_20
	hook_webpublish_exit_30

	Workflow
	hook_workflow_cancel_exit_20

	Validierungshooks
	Wertemengen-Hooks
	Dokumentklassen-Hooks
	Groovy-Schnittstelle in d.3 admin
	Programmierung von Hook-Funktionen
	d.3-dynamische Rückmeldungen aus den Hook-Funktionen
	Nummernkreis für Returnwerte
	Nutzung des Transportsystems für Groovy-Funktionen

	Groovy API-Funktionen
	Groovy-API und Nutzung in JPL

	Groovy-Skripte
	d.3-Schnittstelle (D3Interface)
	d.3 Archiv (ArchiveInterface)
	Archivobjekte (ArchiveObject)
	Dokument (Document)
	Dokumentversionen (DocumentVersion)
	Dateiversionen (PhysicalVersion)
	abhängige Dateien (DependentFile)
	Signaturen (SignatureInfo)

	Systemeigenschaften (DocumentSysValue)
	Notizen (DocumentNote)

	Dokumentart (DocumentType)
	Eigenschaften einer Dokumentart (DocumentTypeAttribute)

	Benutzer (User)
	Benutzergruppen (UserGroup/UserOrUserGroup)
	Wertemengen (PredefinedValueSet)
	Eigenschaftsfelder (RepositoryField)
	Berechtigungsprofil (AuthorizationProfile)

	d.3 SQL Datenbank (SqlD3Interface)
	Client API (D3RemoteInterface)
	Server API Funktionen (ScriptCallInterface)
	Config-Parameter (ConfigInterface)
	Logging (LogInterface)
	Hook-Eigenschaften (HookInterface)
	Fehlerbehandlung (D3Exception)
	Storagemanager
	d.3-Systemeigenschaften

	Debugging
	Remote Debugging mit Eclipse
	Remote Debugging mit IntelliJ IDE

	Groovy-Grundlagen
	Variablen und Strings
	Bedingungen
	Schleifen
	Closures
	Datenbankanbindung
	d.3-Specials
	d.3-Konfigurationsparameter auslesen
	Klasse für globale Konstanten

	Groovy-Hook-Beispiele
	Eintrittspunkte
	InsertEntry_10
	InsertExit_20
	UpdateAttribEntry_20
	Eine Klasse, mehrere Hook-Funktionen

	Validierung
	Wertemengen
	Dokumentklassen

