d.veLop

d.3 hook & server scripting api (groovy)

d.velop AG
Schildarpstralie 6-8
Germany, 48712 Gescher

Fon +49 2542 9307-0
Fax +49 2542 9307-20

www.d-velop.de

info@d-velop.de

http://www.d-velop.de
mailto:info@d-velop.de

d.veLop

Inhaltsverzeichnis

1 Impressum/ REChEIIChE HINWEISE ..ottt esesesese s s sese s seseenens 1
2 EINLEIEUNG ettt a sttt ettt ettt et s s 3
2.1 Uber dieSe DOKUMENEALIONu.vveeeevertecressesssseesssssssesssssesssssasssessasssssssesssessasssssasssessssssasssssssssnsssssassassasssnnes 3
2.2 VO TQUSSEEZUNGEN ..ocuvieieeteeeeeeeeteesteestesseesteessessaesseessaessesssessasasesssesssessessesssessesssasssesssessssssesssesssessesssesssesssensesssesssnns 3
2.3 GTOOVY cetiteeeeiecteeteet et este e e e eteestesste st e ssa et e st e ssaessesssasssasaensasssasssassenseessasssensessaessaassanseensesssensesnsessesssesssensesnsesssenns 3
3 ENtWICKIUNGSUMGEDUNG ..ottt erer s s s s s s s seseseanes 5
3.1 Eclipse als ENtWiCKIUNGSUMGEDUNGcvveieieteeeceee ettt ettt sss s s sttt sesesesas 6
3.2 Erstellen VON HOOK-PIOJEKEENc.coveveeeeieteeeetetee ettt et re st s et esessesesesessesesessasesesensesesensassesensanes 8
3.3 IntelliJ IDEA als ENtWiCKIUNGSUMGEDUNGcuovieieiecectcc ettt st rssess st sssesessssebenens 13
4 GrOOVY HOOK-TYPEN .ttt et ve e st s ss e et essss e et esesesasesesesesasenssasann 16
A1 A B B DT EESPUNKEE. ..ttt ere et s s s s esessasesessasesesessasesessasesesessasesessasesosessasesessasesosen 16
4.1.1 Abhangige Dateien

4.1.2 Aktualisieren der Eigenschaftswerte (Updat@ALETMIDULES)ooveveeevevererererereeeeeeeeseseresererese st s s s sesesesesesene 23
4.1.3 Dokumentanlage (IMPOrEDOCUMENL)ccccvieieieieteiereteteteteteeesessetesesesesesesesesesesasssasasssesessesesesesesesesesessasasasasssesesesesesesesens 29
4.1.4 Dokumente freigeben (REIEASEDOCUMENL)cceveieueueueeeieeeeeeete et e ettt s s s s s s b sesebesesesesesess s asssasssesesesesesesesans 38
4.1.5 Dokument prifen (VEriFYDOCUMENE) ...ttt st sesssesesesessss s ssssssssssssssssssssssssesesessasnsasasssesssssssssssesens 42
4.1.6 Dokumentsuche (GetDocumentLiSt/SEarCNDOCUMENL)cvieveveeereeeeereterererereeee e resesesesssesesesessssssasessesesesesesesesens 44
4.1.7 Einspielen einer neuen Version (ImportNewVersionDocument) .. 51
4.1.8 Erzeugen/ Bearbeiten von TIFF- 0der PDF-DOKUMENLENovoveveverererererereteteeeeeeessesesesesesesesesessssssasasssessesesesesesesesens 62
B.1.9 LOGIN ceetetiteteeeteeeetete ettt te ettt et et e s et e bt e s et e b e et e b e s s b eRe et e R e Rt et eRe et et eReeteReRe bt eaeetese et eae st eseas et et ese et erenstesenartenan 67
4.1.10 Léschen eines Dokuments (DeleteDocument)

4.1.11 Léschen von Verknipfungen (Unlink)

4.1.12 Postkorb (SendHoldFile)

4.1.13 Redlining (WriteRedline)

4.1.14 Senden einer Wiedervorlage (SENAHOIAFILE) ...ttt s s se s s s s s s s b sne 82
4.1.15 Senden VON E-Mails DEi WIBAEIVOTIAGE ...ttt et bbb b s bt s s bbb s esebesane 88
4.1.16 SPEITEN €INES DOKUMENEScuveveeiercreeetcteeetceete ettt s st be s esese s et e s essebes s s ebesessesess b esessesesessesesensesessaseseserssrensasesensasenn 93
4017 SEQAMIMIAAEEN ettt ees s esese e s et se s s s s ae s s st s et s st ae s s eae s eeae st se bt st st ae s st e s seaeseasesetasasseasseacsens 96
4118 SEAEUSETANSFON ettt bbb s s bbbt bbbt acnae
4.1.19 Validieren von Eigenschaftswerten (ValidateAttributes)

4.1.20 Verkniipfen von Dokumente bzw. AKten (LINKDOCUMENES).......coeuerereueeeeereeesererereseseseeeeeesssesesesesesesesesessssasasasenes
4.1.21 WEb-VETOFFENELCRUNG ...ttt ettt ettt et s et e s e s ebesesesesessasasasesesesesesesesesesesessasananes
B.71.22 WOTKFLOW <.ttt ettt s st se e sttt ettt sttt st bbbt ae bt aebstactstactns

4.2 ValidIETUNGSNOOKS ..ottt ebe st be st ese s st ese s s ssssensssesessasssesenssesensasssesensasesensanes

4.3 WETLEMENGEN-HOOKSeeeveveeercreteeetcreee ettt esesesssesese s s esessasesesessesesessnsssesessasssessassessssasesessnsesesensanes

4.4 DOKUMENEKIASSEN-HOOKS.....cu vttt sttt ettt bttt et sttt s e s nnaes

4.5 Groovy-Schnittstelle in d.3 @dMIN...c ettt s s e sss s s st s s s s esesnsasas

4.6 Programmierung VON HOOK-FUNKEIONEN........cccerereeeeetereetereeeeteteetetereeteseeesese e ssesesesesesesessesesensassesesnanes

4.7 d.3-dynamische Rickmeldungen aus den HOOK-FUNKEIONENcuvvvveveeieivecriieecceeeecseevess e reseenevessannes 140
4.8 NUMMETNKIEiS FUT REEUMMWETEE ..cucvieieieeieeeieieteeeteeisieee ettt ettt sttt st sttt bttt eaes 140
4.9 Nutzung des Transportsystems Fir GroOVY-FUNKEIONEN........cvveiierereieeererieerereseeeresereseresnresesessesesessanenes 141

d.veLop

5 GroOVY API-FUNKEIONEN ...ttt sessessesesessessesesessessessssensessenens 143
5.1 GrooVY-API UNA NUEZUNG IN JPL ettt sesene s s e s ssesesesesesessasesessssesessnsanssessnssssensanesns 144
6 GTOOVY-SKIIPEE ..ottt eteee e esesae s essesessessesesessessesessensessesessessessessnsensensesens 149
7 d.3-Schnittstelle (D3INEEMFACE) ..ottt ssesessaeessesenees 151
7.1 d.3 ArChiV (ArChIVEINEETFACE) c.ueeveeeeeeereeeereeeteteetet et ese e ss s s e s s e s s s e s s se s s s e sneneseseesnene 152
7.1.1 ArchivoObJeKEE (ATCRIVEODIECL) ..uuiuieieeeeeee ettt ettt et bbb bbb ss s s ases st esebeseseseseseasanananes
7.1.2 DOKUMENE (DOCUMENE) «.veveeetcecectcececececc ettt teae s sssesesss s st ssssssssssesssessssssasasssssssssssssssssesesessasssasasssesssssssesssssessssnsasnsnnes
7.1.3 Dokumentart (DocumentType)

T 18 BENUEZET (USE).ueeeeieieeeeerereeereresesesesesessssssessesesesesesssesesesessasssssasssesesesesesssesesesessssssssessesesssesesssssesessssssssnsasssesesssesssesesessnsasnsnsen
7.1.5 Benutzergruppen (UserGroup/USErOTUSEIGIOUD)ceueeeeerereureeesesesesssssesessssssssssessssssssssssesssssssssssesssssssssesesssssssssesssns 166
7.1.6 Wertemengen (PredefiN@AVALUESEL) ...ttt et s bbb s e e as s seseseseseseseseseseaeasasananes 167
7.1.7 Eigenschaftsfelder (REPOSIEOMYFIEIA)c.ceueiereieieeereeeeeeseee ettt ettt bbb s s e s s as s eses st eseseseseseseseasanananes 168
7.1.8 Berechtigungsprofil (AUENOTIZAEIONPTOFILE) ...cucvevcueeeeeeceeeeee ettt ettt e s s a bbb s s ananes 168
7.2 d.3SQL DAtenbank (SID3INEETFACE) ..ottt se s s s ss s se e s s bessanenene 168
7.3 Client APl (D3REMOLEINEETFACE) w.viueeveverirererieeeecteeeetcreeerere e ese e esese e s se e ssesesesessesesessasesesennenesensansns 171
7.4 Server APl FUNKtionen (SCriptCallINEEIFACE)uuuuiveevereeeeereeeeecreeerereeeeeeree e s s s s e nene s s nenene 174
7.5 Config-Parameter (CONFIGINEEIFACE) c.cciuereeeeeeeeeeeeeeeeeetests ettt st e s s ss s s st st st esesasesas 178
7.6 LOGGING (LOGINERIFACE) w..eoueeeeeeeeeeeeeeeeeeeeeetetetesesetete s e e s s eses s sesesesesesesesesesesesesesessasasasasasasasesesssesesesesenes 179
7.7 HoOK-Eigenschaften (HOOKINEEIFACE) ..ottt s s se s s e ne e s bene 179
7.8 Fehlerbehandlung (D3EXCEPLION) .. iieeieirieeecrcreeeecreeerereserereseesesesessseseesesesessssesesssssesessasesessnssessnsanesns 180
7.9 S OTAGEMANAGET c.uuiieuiiereeteeteereeeteeiteerteseesaeestestessaessessaassasasasssesssessessesssesssensesssesssesssessesssesssesseessesssesssessasssessanns 181
7.10 d.3-SySEEMEIGENSCRAFLEN ...ttt s bbb s b ss s s ss s s e snenesessanenene 181
8 DEDUGGING ettt ere e bbb e e bbb s s b n b e aebe e s s e s sennenennes 183
8.1 Remote DebUGGING ML ECLIPSE.... ettt ettt s et s e s s s s st se st s s s enene 183
8.2 Remote Debugging MIL INEELLII IDE ...ttt be e s s s e ss e s nane 185
O GrOOVY-GrUNAIEGEN....ceceeeeeeeceeteteteteetetetere et ese s esseseesessessesessessessesesessensesensensenssens 188
9.1 Variablen UNA SEMNGS ...uvevivieieerceeececreeecrcteeeterees et s eressssesesessesesessasesesessesesessasesesessasesessasesessssasssessnsesesensanes 189
9.2 BEAINGUNGEN c..cveeeeerereteeeetereeeeteeeeteresesesesessesesesesseseseasesesessasesesessesesessasesesessesesessnssesessasesessassesessasesessnssesensanes 191
LT T Vel 31 £ =T OOV UVUTRPRTT 193
0.4 ClOSUTES....uiueeeueeeueeiesete et tetstststssstesssesssesesesasesesasasasssassssssssasas st et et et esetesesesasasasasasasesssesssansssssssssasssassssasasesesasasns 195
9.5 DAtenNbaNKaANDINAUNG ..ottt ettt ebe et srsse st e b e e s sbesess st esese s sassenssereneanes 196
9.6 o3-S PECIALS vttt ettt b et b et s b bbb e bt et e s e st eb e s e s et e R ers et erereas et erenssereneanes 199
9.6.1 d.3-KONfigUratioNSParameELEr QUSLIESEN.........cuevevevevevereeieeeereeerereeerere s ssesesesesesesesesesessssasasasessesesssesesesesesensasasases 199
9.6.2 Klasse FUr gloDale KONSEANEENcccceueueieieciereteieeeetetetsesetesesssss e sssessssssese st sssassesesssssassssesesessssssesessssssssssasesssssasassasanns 200
10 GroOOVY-HOOK-BEISPIELEveeevereerereecteeeteteteeeteteteete st esessese s sesesesesesennenenn 202
TO.T EINETIEESPUNKEE oottt ettt ere st e st et b et e e ssesssse s sse st ensssenssassensesessessesensesensensesensesenseneans 202
TO0.1.T INSETEENETY _TO ceiieteteieiesteteestestesteestesteste e ssesae s e asseste st ssessestesaesassastastesessassassesansassastesessensessesensensestesessessessesessessestesessessessases 204
10.1.2 InsertExit_20

10.1.3 UPAAEEALLTIDENETY 20 ..ottt seeesesesesesesessssssssessesesesesesesesesesessasasasasesesesesesesssesesssessasssasasssssesesessseseseses 214
10.1.4 Eine Klasse, Mehrere HOOK-FUNKLIONEN ...ttt rereteresese e ses s s sesesesesesesesesessasasesasssesesesesesesesesesn 217
T0.2 VAlAIEIUNG ettt e sa st s st s st et st et et et e b e sesesasesesasassasssssas st st s tetesesesesatesasasasasesasans 220

T0.3 WETEEMENGEN c..eiteeeteteteetecterteeee e e e s e et e e e s et e te st e stessa st essesassassesseesaeseassessassantantastassansansansansansassessessssssessensenes 223

d.veLop

O B Lo Y (UL n =T AT Y= 3 OO 231

d.veLop

1 Impressum/ Rechtliche Hinweise

Alle bisherigen Dokumentationen zu d.3 server scripting api (groovy) verlieren mit der Veroffentlichung
dieser Dokumentation ihre Giiltigkeit.

Die in dieser Dokumentation enthaltenen Informationen sind mit groRter Sorgfalt erstellt und durch unsere Qualitatssicherung nach dem
allgemeinen Stand der erprobten Technik geprift. Dennoch sind Fehler nicht auszuschlieRen. Aus diesem Grund stellen die in der
vorliegenden Dokumentation enthaltenen Informationen keine Verpflichtung, zugesicherte Eigenschaft oder Garantie dar. Die d.velop
AG Ubernimmt auf Basis dieser Dokumentation keine Haftung oder Gewahrleistung. Anspriiche nach dem Produkthaftungsgesetz sowie
nach Deliktsrecht bleiben unberihrt, sofern sie nicht individualvertraglich ausgeschlossen wurden.

Aussagen Uber gesetzliche, rechtliche und steuerliche Vorschriften und deren Auswirkungen haben nur fir die Bundesrepublik
Deutschland Gultigkeit.

Die d.velop AG behlt sich vor, in ihrer Software vorhandene Komponenten von Drittanbietern durch funktionsaddaquate Komponenten
anderer Hersteller zu ersetzen. Die d.velop AG behalt sich in Ausiibung Ihrer jeweils giltigen Releasepolitik vor, Produktfeatures und
einzelne Softwareprodukte nicht mehr durch Softwarepflege- und Supportleistungen zu unterstiitzen. Naheres dazu finden Sie im

Supportlebenszyklus des d.velop-Service-Portals unter https://portal.d-velop.de.

Die Verwendung der Texte, Bilder, Grafiken sowie deren Arrangements, auch auszugsweise, sind ohne vorherige Zustimmung der d.velop
AG nicht erlaubt.
Alle verwendeten Hard- und Softwarenamen sind Handelsnamen und/oder Warenzeichen der jeweiligen Hersteller/Inhaber, die diese zur

Verfiigung gestellt haben.

Sofern Teile oder einzelne Formulierungen dieser Dokumentation der geltenden Rechtslage nicht, nicht mehr oder nicht vollstandig
entsprechen sollen, bleiben die ibrigen Teile der Dokumentation in ihrem Inhalt und ihrer Giltigkeit davon unberGhrt.

In der Dokumentation kénnen Sie Gber Links zu externen Internetseiten gelangen, die nicht von uns betrieben werden. Derartige Links
werden von uns entweder eindeutig gekennzeichnet oder sind durch einen Wechsel in der Adresszeile Ihres Browsers erkennbar. Fir die

Inhalte dieser externen Internetseiten sind wir nicht verantwortlich.

Kontakt

d.velop AG

SchildarpstraRe 6-8

48712 Gescher, Deutschland

Fon +49 2542 9307-0

d-velop.de oder info@d-velop.de

Vertreten durch den Vorstand: Christoph Pliete (Vorsitzender), Mario Dénnebrink
Vorsitzender des Aufsichtsrates: Dr. Helmut Bdumer

Handelsregister beim Amtsgericht Coesfeld, Nr. HRB 4903
Umsatzsteueridentifikationsnummer: DE 813062165

Bei Fragen zu dieser Dokumentation oder zur Software wenden Sie sich bitte an uns.
Fon +49 2542 9307-6000
support@d-velop.de

© d.velop AG. Alle Rechte vorbehalten.

d.3 hook & server scripting api (groovy) 1

https://portal.d-velop.de
https://www.d-velop.de/
mailto:info@d-velop.de
mailto:support@d-velop.de

d.veLop

Kontakt
d.velop AG

Schildarpstralie 6-8
48712 Gescher, Deutschland

Fon +49 2542 9307-0

d-velop.de

info@d-velop.de

Vertreten durch den Vorstand: Christoph Pliete (Vorsitzender), Mario Dénnebrink
Vorsitzender des Aufsichtsrates: Dr. Helmut Baumer

Handelsregister beim Amtsgericht Coesfeld, Nr. HRB 4903
Umsatzsteueridentifikationsnummer: DE 813062165

Bei Fragen zu dieser Dokumentation oder zur Software wenden Sie sich bitte an uns.

Fon +49 2542 9307-6000
support@d-velop.de

Alle Rechte vorbehalten. Irrtimer vorbehalten.

Dieses Dokument wurde zuletzt am 12.02.2019 iberarbeitet und bezieht sich auf d.3 server scripting api
(groovy) ab Version 8.1.0.
Name des Dokuments: d3serverscriptingapigroovy.pdf (Buildnummer: 20190212)

d.3 hook & server scripting api (groovy) 2

http://www.d-velop.de/
mailto:info@d-velop.de
mailto:support@d-velop.de

d.veLop

2 Einleitung

2.1 Uber diese Dokumentation

Dies ist eine Dokumentation zum Groovy Skripting mit d.3 server ab Version 8.1.0.
Diese Dokumentation enthalt Informationen, wie d.3-Hook-Funktionen und Skripte mit Groovy entwickelt
werden kénnen und welche Schnittstellen und Funktionen d.3 server dafiir bereitstellt.

Diese Dokumentation steht Entwicklungspartnern der d.velop AG im Service Portal online bereit. Die
Weitergabe dieser Dokumentation oder von Teilen daraus ist nicht gestattet. Bei Anfragen im Rahmen der
Entwicklungspartnerschaft gilt stets nur die Onlinedokumentation.

Bitte beachten Sie, dass Ihre Software (iber diese Schnittstelle auch Zugriff auf die von lhren Kunden im
d.3ecm abgelegten und konfigurierten Daten erhalt und Eingriff in die Abldufe im d.3ecm-System nimmt.
Gehen Sie daher bitte sorgfaltig vor und achten Sie darauf, dass Ihre Anwendung Teil eines bestehenden
Zusammenspiels unterschiedlicher Anwendungen ist. Die unsachgemaRe Verwendung dieser Schnittstelle
kann verdnderte Programmabldufe und Datenverlust zur Folge haben.

Die Software-Entwicklung mit dieser Programmierschnittstelle ist Individualentwicklung. Der von Ihnen
erzeugte Programmcode fallt nicht unter die Pflege- und Supportbedingungen der Produkte der d.velop
AG. Unser Support unterstiitzt Sie gerne, lhre Anfragen sind jedoch kostenpflichtig, sofern sich die
Anfrage nicht auf einen Fehler in unseren Produkten zuriickfiihren asst.

Alle Fragen zu den Voraussetzungen und zur Software-Entwicklung mit d.3ecm beantwortet Ihnen gerne
das Technology Partner Management der d.velop AG.

2.2 Voraussetzungen
Voraussetzung fiir die Nutzung sdmtlicher Java/ Groovy-Funktionalitdten ist Aktivierung des Java/ Groovy-
Supportsin d.3 config.

Hinweis
Der Java/ Groovy-Support ist in d.3 Server Version 8.0.x im Standard aktiviert.

Weitere Informationen entnehmen Sie der Dokumentation zu d.3 admin.

Zu diesem Zweck bringt d.3 server die Java Laufzeitumgebung von Sun/Oracle in der Version 8 mit, deren
Startmodul im gleichen Abschnitt voreingestellt ist.

2.3 Groovy

Groovy ist eine populére, dynamische Skriptsprache fiir die Java Virtual Maschine.

d.3 hook & server scripting api (groovy) 3

d.veLop

Durch die enge Integration mit Java steht die ganze Java-Welt mit vielen umfangreichen Bibliotheken zur

Verfligung.

Groovy besitzt einige Fahigkeiten, die in Java nicht vorhanden sind: Native Syntax fiir Maps, Listen und
Reguldre Ausdriicke, ein einfaches Templatesystem, mit dem HTML- und SQL-Code erzeugt werden kann,
eine XQuery-dhnliche Syntax zum Ablaufen von Objektbdumen, Operatoriiberladung und eine native
Darstellung fiir BigDecimal und Biglinteger.

Groovy wird nicht wie andere Skriptsprachen lber einen interpretierten Abstract Syntax Tree ausgefihrt,
sondern vor dem Ablauf eines Skripts direkt in Java-Bytecode Ubersetzt. Syntaktisch ist Groovy viel weiter
von Java entfernt als BeanShell, dafiir aber viel ndher zu Ruby und Python.

Mehr Informationen finden Sie auf der offiziellen Groovy Website http://www.groovy-lang.org/. Dort gibt
es Tutorials und eine Dokumentation fiir Anfanger, wie auch fiir fortgeschrittene Benutzer der Sprache.

d.3 hook & server scripting api (groovy) 4

http://www.groovy-lang.org/

d.veLop

3 Entwicklungsumgebung

Da es sich bei Groovy Code um schlichte Textdateien handelt, konnen diese jederzeit mit einem einfachen
Texteditor bearbeitet werden.

Zur effektiven Hook-Entwicklung empfiehlt sich jedoch die Benutzung einer Entwicklungsumgebung wie
Eclipse, welche den Benutzer durch Features wie automatische Code-Vervollstandigung unterstiitzen.

Die Java-Klassen der d.3-Server-Schnittstelle und Groovy-Unterstitzung sowie der Groovy-Interpreter
selbst befinden sich im Java Archive groovyhook.jar im d.3 server-Programmverzeichnis (Standard: C:
\d3\d3server.prg).

In Eclipse kann dieses in den Project Properties unter Java Build Path als External JAR eingebunden
werden.

In dem Zusammenhang sollte auch gleich ein Groovy-Pluglin fir Ecplise installiert werden, um direkt die
bestmdgliche Unterstiitzung fiir Syntax Highlighting und Kommandoergdnzung nutzen zu kénnen.

Hinweis

Bei der Entwicklung und dem Test von Groovy Programmcode sollte der d.3 config-Schalter
Neuladen von Groovy-Hookdateien bei Anderung aktivieren (RELOAD_ON_CHANGE) aktiviert
werden.

Jedes Speichern von Groovy-Hookdateien fihrt dann dazu, dass diese von den Server Prozessen
automatisch neugeladen werden und die Code-Anderungen sofort aktiv sind.

Wichtig

Das Aktivieren der "Neuladen-Option" sollte aus Sicherheitsgriinden NICHT im Produktivsystem
vorgenommen werden. Bei Anderungen an den Groovy-Skripten wiirden diese sofort produktiv
aktiv!

d.3 hook & server scripting api (groovy) 5

d.veLop

3.1 Eclipse als Entwicklungsumgebung

Einrichtung von Eclipse als Entwicklungsumgebung Ffiir die Hook-Entwicklung

1. Laden und installieren Sie ein Java Development Kit (JDK) fiir Java.

Wichtig

Oracle hat seine Lizenzbedingungen beziiglich seiner Java Distribution (iberarbeitet, ab
Februar diesen Jahres (2019) nicht mehr kostenlos nutzbar. Dies gilt fir JDK/JRE-Updates
die nach Januar diesen Jahres bei Oracle bezogen wurden.

Aus diesem Grund werden alle betroffenen Produkte kiinftig mit dem OpenJDK (https://
openjdk.java.net/) ausgeliefert und bis dahin in Hotfixen maximal "Oracle Java 8 Update
201"verwendet. Beziiglich dieser Lizenz ist jedoch ab jetzt zwingend darauf zu achten, dass
in der von uns ausgelieferten Distribution (jeweils der "jre"-Unterordner) keine
Anpassungen unsererseits oder durch Kunden vorgenommen werden. Unsere Kunden
konnen bestehende Installationen unserer Software weiterhin betreiben und werden beim
nachsten Update (bis auf einen Hinweis in den Readme's) voraussichtlich nichts von diesem
Wechsel mitbekommen.

2. Laden Sie Eclipse IDE For Java Developers von www.eclipse.orgin herunter und entpacken Sie

diese.

3. Starten Sie die entpackte eclipse.exe.

4. Wahlen Sie ein geeignetes Verzeichnis fir ihren workspace. Der Workspace ist ein Verzeichnis, in

dem Eclipse ihre Projekte verwaltet. Geben Sie hier KEIN Verzeichnis vom d.3-Server an, sondern in
Ihren eigenen Dateien.

Nach dem Start von Eclipse muss noch das Groovy-Plugin fir Eclipse installiert werden.

. Unter Help wadhlen Sie Install New Software....

Bestimmen Sie unter https://github.com/groovy/groovy-eclipse/wiki die fir Ihre Eclipse-Version
passende Update Site. Eine Update Site ist eine Webadresse, (ber die Eclipse auf automatisch
Software installieren kann.

Unter Work with tragen Sie diese Update Site ein und bestdtigen.

. Aktivieren Sie das Feature Groovy-Eclipse (Required).

5. Fihren Sie die Installation durch.

Ihre Eclipse-Installation ist jetzt bereit zur Programmierung von d.3-Hooks mit Groovy.

d.3 hook & server scripting api (groovy) 6

http://www.eclipse.org/
https://github.com/groovy/groovy-eclipse/wiki
https://openjdk.java.net/
https://openjdk.java.net/

d.veLop

Hinweis

Nach dem ersten Start von Eclipse in einem neu erstellten Workspace missen Sie evtl. von der
Willkommensseite zur Standardansicht wechseln, indem Sie die Schaltflache Workbench in der
oberen rechten Ecke anwahlen.

Falls das Zielsystem keinen Internetzugang zuldsst
Das oben beschriebene Vorgehen kann auch auf einem separaten Rechner durchgefiihrt werden,
um die Eclipse-Umgebung einmal zusammenzustellen.

Sobald alles fertig ist, kann der Eclipse-Ordner einfach auf die Zielmaschine kopiert werden, es
muss nicht explizit installiert werden.

d.3 hook & server scripting api (groovy) 7

d.veLop

3.2 Erstellen von Hook-Projekten

Um Hooks zu programmieren, erstellen Sie ein neues Projekt: File > New > Projekt.

1. Wahlen Sie Groovy Projekt und vergeben Sie auf der ndchsten Seite einen sprechenden Namen.

2. Auf der Seite Build Settings fligen Sie ein neues Quelltext-Verzeichnis hinzu, indem Sie auf das
Projekt rechtsklicken und Link Source auswahlen.

3. Indem sich 6ffnenden Fenster geben Sie als Linked folder location das in d.3 admin definierte
Verzeichnis fir lhre Groovy-Hooks an (siehe Groovy-Hook-Verzeichnisse fir kundenspezifische
Programmanpassungen).

d.3 hook & server scripting api (groovy) 8

d.veLop

4. Als Folder name wdhlen Sie etwas Sprechendes wie z.B. "Hooks" und bestatigen Sie mit Finish.

Build Settings
Define the build settings

(% Source | L= Projects | = Libraries | “ Order and Expl:urt|
BE FE e

AlE‘.‘r" Dermo-Pr-i-t+

bR src E‘% Ise as Source Faolder
|% Link Source..,
@3 Mew Source Folder..,

w [etails

&9 Create new source folder: use this if you want to add a new source falder to
your project,

Fm Link additional source: use this if you have a folder in the file systern that
should be used a3 additional source folder,

38 Add project 'Dermo-Projekt to build path: Add the project to the build path if
the project is the root of packages and source files, Entries on the build path are
wisible ta the compiler and used for building,

[] &llow output folders for source folders

Default output folder:

| Dermao-Projektibin | | Brouvse.,,

d.3 hook & server scripting api (groovy) 9

d.veLop

= Link Source -[ax]
Source Folder - | I

Link additional source to project 'Dermo-Projekt’, fP /
Linked folder location:

| Chd3hd3server.prgi DIRNGroowy | | Browse... | | Wariables... |
Folder name:

| Hooks| |

?\ < Back Dlext = | | Einish | | Cancel

5. Erstellen Sie das Projekt mit Finish.

6. Sie konnen den Ordner srcin Ihrem soeben erstellten Projekt nun l6schen.

7. Suchen Sie im Installationsverzeichnis Ihres d.3-Servers (Standard: C:\d3\d3server.prg) die
Datei groovyhook.jar und kopieren Sie diese in Ihr Eclipse-Projekt.

8. Flgen Sie die groovyhook.jar zum Build Path hinzu, indem Sie darauf rechtsklicken und aus Meni
Build Path > Add to Build Path wéhlen. Wenn sich die Eclipse sowie d.3 server-Installation auf dem
gleichen Rechner befinden, kann die groovyhook.jar auch direkt als External JAR eingebunden

werden, ohne diese kopieren zu missen.

Wichtig

Wenn die fiir das Groovy-Projekt automatisch in den Java Build Path aufgenommene
Version der Groovy Libraries neuer ist, als die in der groovyhook.jar enthaltene, dann
meldet Eclipse einen Versionskonflikt. In diesem Fall miissen im Tab Libraries die Eintrdge
Groovy DSL Support und Groovy Libraries aus dem Java Build Path entfernt werden.

d.3 hook & server scripting api (groovy) 10

d.veLop

a & Dermo-Projekt
% Hooks
[=i JRE Systern Librany [JzwvaE-1.8]
[=i Groowy Libraries
[m Groowy DEL Support

| £ groowyho~!
I ey 3
COpen F3
Open With 3
Showe In A+ Shift+40 »
= Copy Ctrl+C

E= | Copy Qualified Mame

[T5 Paste Crl +1

¢ Delete Delete
Rernowe frorm Context Ctrl + &0t + Shift+Dowen
bark as Landmark Ctrl +8lt+Ehift+Up

| Build Path v |low Addto Build Path |
Refactor Alt+Shift+T ¥ | 0. Configure Build Path...

iun | Import., [

9. Erstellen Sie neue Hook-Klassen, indem Sie im Kontextmenii des Ordners Hooks unter New | Other
den Typ Groovy Class auswahlen.
10. In dem Assistenten vergeben Sie einen sprechenden Namen fir lhren Hook und bestdtigen mit
Finish.

d.3 hook & server scripting api (groovy) 11

d.veLop

=] Create a new Groowy class M

Groovy Class —

1, The use of the default package is discouraged. @

Source folder: | Derno-Projekt/Hooks | | Browuse.., |

Package: | | (default)

[l Enclosing type: Erowrse...

Marne: | DemoHook| |

Modifiers: ®) public) package private protected

[]abstract []Create Script static

Superclass: |ja'-.-'a.lang.0h_iect | | Browuze.., |

Interfaces: Add...
Remuowe

Which method stubs would wou like to create?
] public static woid main(String[] args)
[] Canstructars fram superclass
Inherited abstract methaods
Do youwvant to add comments? (Configure termplates and default wvalue here)

|:| Generate comments

@ Mext = Finish | | Cancel

Sie kénnen nur lhre Hook-Funktionen implementieren.

Sollten Sie in d.3 admin konfiguriert haben, dass bei Anderungen an Hooks diese automatisch neu geladen
werden, miissen Sie in Eclipse nur speichern, um Anderungen zu testen. Nur wenn Sie das automatische

Neuladen deaktiviert haben, miissen Sie Ihre Repositoryprozesse neustarten, um Anderungen zu
ibernehmen.

d.3 hook & server scripting api (groovy) 12

d.veLop

3.3 IntelliJ IDEA als Entwicklungsumgebung

Wenn statt eclipse die IntelliJ Idea genutzt werden soll, ist dies moglich. Hierzu sind ein paar Schritte
notwendig.

Einrichtung von IntelliJ als Entwicklungsumgebung fiir die Hook-Entwicklung

1. Laden und installieren Sie ein Java Development Kit (JDK) fir Java.

Wichtig

Oracle hat seine Lizenzbedingungen beziiglich seiner Java Distribution (iberarbeitet, ab
Februar diesen Jahres (2019) nicht mehr kostenlos nutzbar. Dies gilt fiir JDK/JRE-Updates
die nach Januar diesen Jahres bei Oracle bezogen wurden.

Aus diesem Grund werden alle betroffenen Produkte kiinftig mit dem OpenJDK (https://
openjdk.java.net/) ausgeliefert und bis dahin in Hotfixen maximal Oracle Java 8 Update 201
verwendet. Bezlglich dieser Lizenz ist jedoch ab jetzt zwingend darauf zu achten, dass in
der von uns ausgelieferten Distribution (jeweils der jre-Unterordner) keine Anpassungen
unsererseits oder durch Kunden vorgenommen werden. Unsere Kunden kénnen bestehende
Installationen unserer Software weiterhin betreiben und werden beim nachsten Update (bis
auf einen Hinweis in den Readme's) voraussichtlich nichts von diesem Wechsel
mitbekommen.

2. Laden Sie IntelliJ IDEA® herunter (die kostenfreie Community Edition reicht hier aus) und
installieren Sie diese: https://www.jetbrains.com/idea/download/#section=windows

3. Laden Sie danach die Groovy-Bibliothek herunter und installieren diese: http://groovy-lang.org/
download.html

4. Starten Sie danach IntelliJ.

5. Wahlen Sie ein geeignetes Verzeichnis fir ihr Projekt.

d.3 hook & server scripting api (groovy) 13

https://www.jetbrains.com/idea/download/#section=windows
http://groovy-lang.org/download.html
http://groovy-lang.org/download.html
https://openjdk.java.net/
https://openjdk.java.net/

d.veLop

6. Markieren des Verzeichnis als Sources Root.

Alt+FT
Strg+Umschalt+F
Strg+Umschalt+R
»
b

Strg+Umschalt+T

+L

Bekanntgeben der Groovy-API von d.3

Danach miissen Sie noch die Groovy-API Ihrem Projekt bekannt geben.

1. Offnen Sie hierzu File > Project Structure.

2. Im neuen Fenster miissen Sie dann unter Libraries die groovyhook.jar aus dem
Programmverzeichnis von d.3 server hinzufiigen.
Klicken Sie hierzu auf das +-Zeichen und wéahlen Java.

d.3 hook & server scripting api (groovy) 14

d.veLop

3. Wahlen Sie schlief3lich die groovyhook.jar aus dem Programmverzeichnis von d.3 server aus.

Bl Project Structure

Libraries

BN Select Library Files X
Se n which curm

ation or native libra ted

4. Eserscheint nun eine Meldung, dass die Bibliothek zu Ihrem Projekt hinzugefiigt wird. Bestdtigen
Sie diese Meldung mit OK.

5. Die Bibliothek wird nun angezeigt. Damit die Einstellung gespeichert wird, wadhlen Sie Apply oder
OK.

Nun steht Ihnen die Groovy-API von d.3 zur Verfiigung und Sie kénnen Groovy-Hooks mit Hilfe der IntelliJ-
Entwicklungsumgebung entwickeln.

Weitere Informationen zu IntelliJ IDEA

Eine ausfihrliche Dokumentation, sowie Tutorials finden sich beim Hersteller JetBrains auf der
Homepage: https://www.jetbrains.com/idea/documentation/.

d.3 hook & server scripting api (groovy) 15

https://www.jetbrains.com/idea/documentation/

d.veLop

4 Groovy Hook-Typen

Was ist ein Hook?

Mittels sogenannter Hooks kann in unserem System an vielen definierten Schnittstellen, sogenannten
Einsprung- bzw. Eintrittspunkten, eigene Funktionen mittels Groovy-Skript hinterlegt werden. Damit kann
auf User-Interaktionen mittels Skripten reagiert und individuelle Anpassungen im System hinterlegt
werden.

Unterschiedliche Typen der Hook-Schnittstellen
Es stehen unterschiedliche Integrations-Typen zur Auswahl:

« Eintrittspunkte sind Event-gesteuerte Skript-Schnittstellen
 Validierungshooks zur erweiterten Validierung von Werten

Bereitstellung von dynamischen Wertemengen
» Erweiterte Dokumentklassen

[Aktenplan] - aktuell leider nicht in Groovy unterstitzt.

4.1 d.3-Eintrittspunkte

Allgemein

Die Eintrittspunkte werden durch eine User-Aktion getriggert und werden dann, wie die Perlen auf einer
Kette, nach einander abgearbeitet. Wird dabei eine Hook-Funktion innerhalb dieser Kette mit einem Wert
ungleich 0 verlassen, wird damit die Kette unterbrochen. Wird zum Beispiel wahrend des manuellen
Imports einer Rechnung festgestellt, dass die Kunden-Nr. einen falschen Wert enthélt, kann damit die
Ablage der Rechnung im System verhindert werden.

d.3 hook & server scripting api (groovy) 16

d.veLop

[ValidatelmportEntry_10]

HostimportinsertEntry_10

InsertEntry_20

InsertEntry_30 RESERVIERT

Alle verfiigbaren Eintrittspunkte fiir Hook-Funktionen im d.3 werden in den folgenden, untergeordneten
Seiten im Einzelnen beschrieben.

Fir die beschriebenen Parameter einer Hook-Funktion werden die im Kontext des Aufrufs verfligbaren d.3
Archiv-Objekte an die Groovy-Hook-Funktionen Gbergeben.

Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-Funktion immer die d.3 Schnittstelle
Gbergeben.

import com.dvelop.d3.server.Entrypoint
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;

class MyHooks{
@Entrypoint(entrypoint="hook_insert_entry_10")
public int checkincommingDocuments(D3Interface d3, User user, DocumentType docType, Document doc){
println "groovy hook insert_entry_10";
doc.field[1] = "<New value from hook function>";
return 0;
}// end of checklncommingDocuments
}// end of MyHooks

d.3 hook & server scripting api (groovy) 17

d.veLop

Hinweis
Es konnen auch mehrere Methoden pro Eintrittspunkt registriert werden.

Ist dabei die Reihenfolge des Aufrufs relevant, kann diese mit dem numerischen Attribut order in

der Annotation festgelegt werden.
Der Defaultwert fiir Attribut order ist dabei "1".

Vor dem Aufruf aller Methoden einer Klasse fiir denselben Eintrittspunkt werden diese nach
Attribut order aufsteigend sortiert.
Soll also eine Methode nach einer anderen fiir den gleichen Eintrittspunkt aufgerufen werden,

muss deren order Wert gréRer sein.

// ...
@Entrypoint(entrypoint="hook_insert_entry_10", order = 2)
def checkincommingDocuments_2(D3Interface d3, User user, DocumentType docType, Document doc){
println "Zweite Methode fir Eintrittspunkt hook_insert_entry_10";
doc.field[2] = "<New value from second hook function>";
return O0;
}// end of checkincommingDocuments
}/ end of MyHooks

Hinweis

Ein zweiter Annotations-Typ ist @Condition. Mit diesem konnen Bedingungen fir den Aufruf der
damit annotierten Methode definiert werden.

Per Eigenschaft doctype konnen IDs von d.3-Dokumentarten angegeben werden.

Besitzt dieser Eintrittspunkt einen Parameter vom Typ Document oder ein DocumentType, werden
die enthaltenen Dokumentart-IDs mit der Bedingung verglichen.

Bei mindestens einer Ubereinstimmung wird die Methode aufgerufen.

// ...
@Entrypoint(entrypoint="hook_insert_entry_10", order=2)

@Condition(doctype=["DA1"])
def insertEntry10_2(D3Interface d3, User user, DocumentType docType, Document doc)

{
// ..

Beispiel - Angabe mehrerer Dokumentart-IDs

d.3 hook & server scripting api (groovy) 18

d.veLop

// ...
@Condition(doctype=["DA1", "DA2", "DA3"])

def insertEntry10_2(D3Interface d3, User user, DocumentType docType, Document doc)
{

// ...

Beispiel - mehrere IDs per konstanter Variablen

// ...
static final String PHOTO ="DFOTO"; // Document type for photos

static final String CURRICULUM_VITAE ="DLELA"; // Document type for curriculum vitae

static final String PERSONAL_MASTAER_DATA = "DPSB"; // Document type for personnel master data
static final String CERTIFICATE ="DZEUG"; // Document type for certificates
@Condition(doctype=[PHOTO, CURRICULUM_VITAE, PERSONAL_MASTAER_DATA, CERTIFICATE])

// -

d.3 hook & server scripting api (groovy) 19

4.1.1 Abhdangige Dateien

d.veLop

4.1.1.1 hook_dep_doc_entry_10

int hook_dep_doc_entry_10(D3Interface d3, Document doc, String status, Integer fileld, UserOrUserGroup
editor, String depExt, Integer transfer)

Aufrufzeitpunkt:

Vor dem Eintragen einer abhdngigen Datei in die Datenbank

Parameter

d3
doc
status
fileld

editor

depExt

transfer

d.3 hook & server scripting api (groovy)

Beschreibung

die d.3-Schnittstelle

das Dokument, zu dem die abhdngige Datei gehort
aktueller Status des Dokuments ("Be", "Pr", "Fr", "Ar")
Version des Dokuments

Bearbeiter oder Priifer-Gruppe des Dokuments bei Status
Bearbeitung bzw. Priifung

Dateierweiterung der abhangigen Datei

1: Aufruf wahrend eines Statustransfers

20

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_dep_doc_entry_10")

/] (4)
public int doSomething (D3Interface d3, Document doc, String status, Integer fileld, UserOrUserGroup editor,
String depExt, Integer Transfer){

/1(5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 21

d.veLop

4.1.1.2 hook_dep_doc_exit_10

int hook_dep_doc_exit_10(D3Interface d3, Document doc, String status, Integer fileld, UserOrUserGroup editor,
String depExt, Integer transfer)

Aufrufzeitpunkt:

Nach Eintrag der abhangigen Datei in die Datenbank.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, zu dem die abhédngige Datei abgelegt wurde
status aktueller Status des Dokuments

fileID Version des Dokuments

editor Bearbeiter oder Priifer-Gruppe des Dokuments bei Status

Bearbeitung bzw. Priifung
depExt Dateierweiterung der abhdngigen Datei

transfer 1: Aufruf wahrend eines Statustransfers

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{
/] (3)
@Entrypoint(entrypoint = "hook_dep_doc_exit_10")
/] (4)
public int doSomething(D3Interface d3, Document doc, String status, Integer fileld, UserOrUserGroup editor,
String depExt, Integer Transfer){
/1 (5)
d3.log.error("Hello world!");
/1 (6)
return O;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

d.3 hook & server scripting api (groovy) 22

d.veLop

. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benétigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.2 Aktualisieren der Eigenschaftswerte (UpdateAttributes)

4.1.2.

1 hook_upd_attrib_entry_20

int hook_upd_attrib_entry_20(D3Interface d3, Document doc, User user, DocumentType docType,
DocumentType docTypeNew)

Verfiigbare Felder:

Alle beim API-Call ilbergebenen Felder.

Anderbar sind jedoch nur die dok_dat_-Felder und das Feld text.

Aufrufzeitpunkt:

Es wurden lediglich die neuen Attribute empfangen, jedoch noch nicht auf Plausibilitdt gepriift.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc Dokument-Objekt, mit den zu aktualisierenden Eigenschaftswerten.
Diese konnen in dieser Hook-Funktion gedandert werden.

user der ausfiihrende Benutzer

docType Dokumentart vor der Eigenschaftsaktualisierung

docTypeNew Dokumentart nach der Eigenschaftsaktualisierung

d.3 hook & server scripting api (groovy) 23

d.veLop

Hinweis

Die Werte docType und docTypeNew unterscheiden sich nur, wenn tatsachlich ein
Dokumentartwechsel durchgefiihrt wurde.

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{

/1 (3)

@Entrypoint(entrypoint = "hook_upd_attrib_entry_20")
/1 (4)

@Condition(doctype = ["XXXX"])

/1 (5)
public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType, DocumentType
docTypeNew){

/1(6)

d3.log.error("Hello world!");
/1(7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden" Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 24

d.veLop

4.1.2.2 hook_upd_attrib_exit_10

Hinweis

Diese Hook-Funktion wird nur ausgefiihrt, wenn zuvor kein Fehler aufgetreten ist. Liefert diese
Funktion einen Wert ungleich 0, wird die Aktualisierung abgebrochen und die Anderungen
rickgangig gemacht.

int hook_upd_attrib_exit_10(D3Interface d3, Document doc, Integer errorCode, User user, DocumentType
docType, DocumentType docTypeOld)

Aufrufzeitpunkt:

Direkt vor Beendigung der DB-Transaktion.

Parameter Beschreibung
d3 die d.3-Schnittstelle
doc Dokument-Objekt mit den zu aktualisierenden

Eigenschaftswerten
Diese konnen in dieser Hook-Funktion noch gedndert werden.

errorCode 0: Aktualisierung erfolgreich
<> 0: Fehlernummer; i. a. vom DB-Server geliefert

user der ausfiihrende Benutzer

docType Dokumentart nach der Eigenschaftsaktualisierung

docTypeOld Dokumentart vor der Eigenschaftsaktualisierung
Hinweis

Die Werte docType und docTypeOld unterscheiden sich nur, wenn tatsachlich ein
Dokumentartwechsel durchgefiihrt wurde.

d.3 hook & server scripting api (groovy) 25

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)

@Entrypoint(entrypoint = "hook_upd_attrib_exit_10")
/1 (4)

@Condition(doctype = ["XXXX"])

//(5)
public int doSomething(D3Interface d3, Document doc, Integer errorCode, User user, DocumentType docType,
DocumentType docTypeOld){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt (ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 26

d.veLop

4.1.2.3 hook_upd_attrib_exit_20

Hinweis

Diese Hook-Funktion wird immer ausgefiihrt, auch wenn zuvor ein Fehler aufgetreten ist. Es wird
daher empfohlen, den Parameter errorCode auszuwerten.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc Dokument-Objekt mit den aktualisierten Eigenschaftswerten
errorCode 0: Aktualisierung war erfolgreich

<> 0: Fehlernummer; i. a. vom DB-Server geliefert

user der ausfiihrende Benutzer
docType Dokumentart nach der Eigenschaftsaktualisierung
docTypeOld Dokumentart vor der Eigenschaftsaktualisierung

int hook_upd_attrib_exit_20(D3Interface d3, Document doc, Integer errorCode, User user, DocumentType
docType, DocumentType docTypeOld)

Aufrufzeitpunkt:

Direkt nach Beendigung der DB-Transaktion.

Hinweis

Die Werte docType und docTypeOld unterscheiden sich nur, wenn tatsachlich ein
Dokumentartwechsel durchgefiihrt wurde.

d.3 hook & server scripting api (groovy) 27

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

// (3)

@Entrypoint(entrypoint = "hook_upd_attrib_exit_20")

/] (4)

@Condition(doctype = ["XXXX"])

//(5)

public int doSomething(D3Interface d3, Document doc, Integer errorCode, User user, DocumentType docType,
DocumentType docTypeOld){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 28

d.veLop

4.1.3 Dokumentanlage (ImportDocument)

4.1.3.1 hook_hostimp_entry 10

Wichtig

zurlickgegriffen werden.

Dieser Einsprungpunkt ist aktuell nicht mit der Groovy-Hookschnittstelle kompatibel und kann
deshalb noch nicht genutzt werden.
Bis zur Herstellung der Kompatibilitdt muss auf die JPL-Variante des Einsprungpunkts

int hook_hostimp_entry_10(D3Interface d3, String importDir, String fileName, Document doc, DocumentType

docType, String newlmport)

Aufrufzeitpunkt:

Wird nur beim Hostimport aufgerufen. Direkt nach dem Einlesen der default.1ini und der JPL-

Attributdatei.

Die Unicode-Konvertierung wurde an dieser Stelle noch nicht durchgefihrt. Auch die Werte der

Ubersetzbaren Wertemengen wurden noch nicht konvertiert.

Hier ist eine Anderung der {ibergebenen Eigenschaftswerte mdglich.

Parameter
d3
importDir
fileName
doc
docType

newlmport

d.3 hook & server scripting api (groovy)

Beschreibung

die d.3-Schnittstelle

Verzeichnis, aus dem die Datei importiert wird
Dateiname der zu importierenden Datei

das zu importierende Dokument-Objekt
Dokumentart des zu importierenden Dokuments
"1": import eines neuen Dokuments

"0": Import einer neuen Dateiversion zu einem existierenden
Dokument

29

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_hostimp_entry_10")

/1 (4)
@Condition(doctype = ["XXXX"])

//(5)
public int doSomething(D3Interface d3, String importDir, String fileName, Document doc, DocumentType
docType, String newlmport){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.3.2 hook_insert_entry 10

hook_insert_entry_10 (D3Interface d3, User user, DocumentType docType, Document doc)

d.3 hook & server scripting api (groovy) 30

d.veLop

Aufrufzeitpunkt:

= Vor dem Import. Es wurde lediglich getestet, ob die Verbindung zur DB in Ordnung ist. Hier ist eine
Anderung der iibergebenen Eigenschaftswerte méglich.
= Bei der Datenvalidierung fiir einen anschliefenden Dokumentenimport (API ValidateAttributes

mit Parameter "function" = "Insert")

Die Dokumenteigenschaften sind (iber das Dokumentobjekt zugreifbar. Die Werte der erweiterten
Eigenschaften konnen im Hook gedndert werden.

Parameter Beschreibung
d3 die d.3-Schnittstelle
user der ausfihrende Benutzer
docType Dokumentart des neu zu importierenden Dokuments
doc das neue Dokument-Objekt
Hinweis
Szenario:

Wird ein Dokument im d.3-System abgelegt, soll im d.3 Log-File einfach nur eine Fehlermeldung
"Hallo Welt" angezeigt werden.

d.3 hook & server scripting api (groovy) 31

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_insert_entry_10")

/1 (4)
@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, User user, DocumentType docType, Document doc) {

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.3.3 hook_insert_entry 20

hook_insert_entry_20 (D3Interface d3, Document doc, DocumentType docType, User user)

d.3 hook & server scripting api (groovy) 32

d.veLop

Aufrufzeitpunkt:

Vor dem Import. Die Nutzdatei wurde bereits in das Zielverzeichnis (ibertragen.

Die SQL-Kommandos fiir die Speicherung der Dokument-Metadaten wurden generiert.
Die ibergebenen Dokumenteigenschaften konnen nicht mehr gedndert werden.

Die Eigenschaftswerte sind noch nicht auf Giltigkeit (Wertebereich, reg. Expression, Min.-Max.-Bereich, ...)
gepriift worden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das zu importierende Dokument

docType Dokumentart des zu importierenden Dokuments
user der ausfihrende Benutzer

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_insert_entry_20")

/] (4)

@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, Document doc, DocumentType docType, User user) {
/1 (6)

d3.log.error("Hello world!");

/1(7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.
2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

d.3 hook & server scripting api (groovy) 33

d.veLop

. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natlrlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.3.4 hook_insert_exit_10

int hook_insert_exit_10 (D3Interface d3, Document doc, String fileDestination, Integer importOk, User user,

DocumentType docType)

Aufrufzeitpunkt:

Nach dem Import. Die Datenbank-Transaktion wurde noch nicht geschlossen. Somit kann man hier noch

eine letzte Zuriicknahme erzwingen und damit den Import riickgdngig machen.

Parameter
d3
doc

fileDestination

importOk

user

docType

d.3 hook & server scripting api (groovy)

Beschreibung
die d.3-Schnittstelle
das neue Dokument

Pfad und Name der Zieldatei (Angabe, wohin die Zieldatei
geschrieben wurde)

1: bisher kein Fehler ausgetreten
0: Es trat ein Fehler beim Importieren des Dokuments auf

der ausfihrende Benutzer

Dokumentart des neuen Dokuments

34

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

// (3)

@Entrypoint(entrypoint = "hook_insert_exit_10")

/] (4)

@Condition(doctype = ["XXXX"])

//(5)

public int doSomething(D3Interface d3, Document doc, String fileDestination, Integer importOk, User user,
DocumentType docType) {

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 35

d.veLop
4.1.3.5 hook_insert_exit_20
int hook_insert_exit_20(D3Interface d3, Document doc, String fileDestination, Integer importOk, User user,

DocumentType docType)

Aufrufzeitpunkt:

Nach dem Import. Die Datenbank-Transaktion wurde geschlossen (COMMIT oder ROLLBACK). Somit kann ein
erfolgreicher Import nicht mehr riickgdngig gemacht werden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das neue Dokument

fileDestination Pfad und Name der Zieldatei (Angabe, wohin die Zieldatei

geschrieben wurde)

importOk 1: bisher kein Fehler ausgetreten
0: Es trat ein Fehler beim Importieren des Dokuments auf

user der ausfihrende Benutzer

docType Dokumentart des neuen Dokuments

d.3 hook & server scripting api (groovy) 36

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

// (3)

@Entrypoint(entrypoint = "hook_insert_exit_20")

/] (4)

@Condition(doctype = ["XXXX"])

//(5)

public int doSomething(D3Interface d3, Document doc, String fileDestination, Integer importOk, User user,
DocumentType docType){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 37

d.veLop
4.1.3.6 hook_insert_exit_30

int hook_insert_exit_30 (D3Interface d3, Document doc, String fileDestination, Integer importOk, User user,
DocumentType docType)

Aufrufzeitpunkt:

Nach dem Import. Die Datenbank-Transaktion wurde bereits geschlossen.

Hinweis

Die Funktion kann genauso verwendet werden wie hook_insert_exit_20.

4.1.4 Dokumente freigeben (ReleaseDocument)

4.1.4.1 hook_release_entry_10

Hinweis

Falls diese Hook-Funktion einen Wert ungleich 0 liefert, wird die Freigabe abgebrochen.

int hook_release_entry_10(D3Interface d3, Document doc, User user, DocumentType docType, String unblock)

Aufrufzeitpunkt:

Direkt vor Start der Dokumentfreigabe. Es wurde ermittelt, dass der Benutzer das Recht hat, das
Dokument freizugeben.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das freizugebende Dokument

user der ausfiihrende Benutzer

docType Dokument des freizugebenden Dokuments
unblock gleich "1", wenn das Dokument entsperrt wird

gleich "" sonst

d.3 hook & server scripting api (groovy) 38

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_release_entry_10")

/1 (4)
@Condition(doctype = ["XXXX"])

/1 (5)
public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType, String unblock){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 39

d.veLop

4.1.4.2 hook_release_exit_10

int hook_release_exit_10(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType docType,
String unblock)

Aufrufzeitpunkt:

Nach Durchfiithrung der Freigabe, nach Beendigung der Datenbank-Transaktion.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das freigegebene Dokument
user der ausfihrende Benutzer
errorCode 0: Freigabe war erfolgreich

sonst: Fehlercode
docType Dokumentart des freigegebenen Dokuments

unblock gleich "1", wenn das Dokument entsperrt wird
ungleich "1" bei normalen Freigaben

d.3 hook & server scripting api (groovy) 40

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_release_exit_10")

/1 (4)
@Condition(doctype = ["XXXX"])

//(5)
public int doSomething(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType docType,
String unblock){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 41

d.veLop

4.1.5 Dokument prifen (VerifyDocument)

4.1.5.1 hook_verify_entry 10

Hinweis

Falls diese Hook-Funktion einen Wert ungleich 0 liefert, wird die Prifung abgebrochen.

int hook_verify_entry_10(D3Interface d3, Document doc, Integer versionld, User user)
Aufrufzeitpunkt:

Direkt vor Start der Datenbank-Transaktion. Es wurde ermittelt, dass der Benutzer das Recht hat, das
Dokument zu priifen.

Eingabeparameter:

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das zu priifende Dokument

versionld Nummer der zu priifenden Dokumentversion
user der ausfiihrende Benutzer

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1)
public class D3Hooks{
//(3)
@Entrypoint(entrypoint = "hook_verify_entry_10")
//(4)
public int doSomething(D3Interface d3, Document doc, Integer versionld, User user){
/1 (5)
d3.log.error("Hello world!");
//(6)
return O;
}// end of doSomething
}// end of D3Hooks

d.3 hook & server scripting api (groovy) 42

d.veLop

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt (iber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natirlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.5.2 hook_verify_exit_10

int hook_verify_exit_10(D3Interface d3, Document doc, Integer versionld, User user, Integer errorCode)

Aufrufzeitpunkt:

Nach Durchfiihrung der Priifung. Nach Beendigung der Datenbanktransaktion.

Parameter

d3

doc

versionld

user

errorCode

d.3 hook & server scripting api (groovy)

Beschreibung

die d.3-Schnittstelle

das geprifte Dokument

Nummer der gepriiften Dokumentversion
der ausfiihrende Benutzer

0: Prifung erfolgreich

sonst: Datenbank-Fehlernummer beim Eintrag der Priifung in die
Datenbank

43

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

// (3)

@Entrypoint(entrypoint = "hook_verify_exit_10")

/] (4)

public int doSomething(D3Interface d3, Document doc, Integer versionld, User user, Integer errorCode)}{

/1(5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.6 Dokumentsuche (GetDocumentList/SearchDocument)

4.1.6.1 hook_search_entry 05

int hook_search_entry_05(D3Interface d3, User user, DocumentType docType, Document searchContext)

Aufrufzeitpunkt:

Vor dem Zugriff auf die Volltext-Engine tber d.3 search. Hier kann (iber den searchContext auch der
Volltext-Suchbegriff noch gedndert werden.

d.3 hook & server scripting api (groovy) 44

d.veLop

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausfiihrende Benutzer

docType falls angegeben, die Dokumentart der gesuchten Dokumente
searchContext die Suchbegriffe tiber ein Dokument-Objekt zugreifbar

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_search_entry_05")

/] (4)
@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, User user, DocumentType docType, Document searchContext){

/1 (6)

d3.log.error("Hello world!");

/1(7)
return O;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen benétigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss

d.3 hook & server scripting api (groovy) 45

d.veLop

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.6.2 hook_search_entry_10

int hook_search_entry_10(D3Interface d3, User user, DocumentType docType, Document searchContext)
Aufrufzeitpunkt:

» Vor der Suche nach Dokumenten: Die iibergebenen Suchkriterien sind noch nicht auf Plausibilitat
geprift worden. Eine ggf. aktivierte Konvertierung der Suchkriterien nach Klein- bzw. GroRschrift
wurde noch nicht durchgefiihrt.

» Beider Datenvalidierung fir eine anschlieRende Suche (API ValidateAttributes mit Parameter
"function" = "Search").

Die Suchbegriffe wurden Gbernommen. Diese kénnen im Hook Gber den 'searchContext' gedndert werden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausfiihrende Benutzer

docType falls angegeben, die Dokumentart der gesuchten Dokumente
searchContext die Suchbegriffe tiber ein Dokument-Objekt zugreifbar

d.3 hook & server scripting api (groovy) 46

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_search_entry_10")

/1 (4)
@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, User user, DocumentType docType, Document searchContext){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 47

d.veLop
4.1.6.3 hook_search_entry 20

int hook_search_entry_20(D3Interface d3, User user, DocumentType docType)

Aufrufzeitpunkt:

Vor der Suche nach Dokumenten: Der SELECT-Befehl fir die Suche nach den Dokumenten ist
entsprechend den Suchkriterien schon zusammengesetzt worden.

Eingabeparameter:

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausfihrende Benutzer

docType alles angegeben, die Dokumentart der gesuchten Dokumente

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_search_entry_20")

/1 (4)
@Condition(doctype = ["XXXX"])

/1 (5)
public int doSomething(D3Interface d3, User user, DocumentType docType){
/1 (6)

d3.log.error("Hello world!");
/1(7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.
2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

d.3 hook & server scripting api (groovy) 48

d.veLop

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natlrlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.6.4 hook_search_exit_30

hook_search_exit_30(D3Interface d3, User user, Integer errorCode, Integer noResults, Integer noRefused,

DocumentType docType)

Aufrufzeitpunkt:

Ganz am Ende der Suche, direkt bevor die Ergebnisse an den Client geliefert werden

Parameter

d3
user

errorCode

noResults
noRefused

docType

Rickgabewert:

wird ignoriert

d.3 hook & server scripting api (groovy)

Beschreibung
die d.3-Schnittstelle
Benutzer, der die Suche ausfihrt

0 bei Erfolg
ansonsten ein Fehlercode

Anzahl der Treffer
Anzahl verweigerter Treffer

falls angegeben, die Dokumentart der gesuchten Dokumente

49

d.veLop

Hinweis

Uber die Hook-Eigenschaft no_results_refused kann die Riickgabe der Anzahl der verweigerten
Treffer an den Aufrufer deaktiviert werden.

Diese kann in Kontexten genutzt werden, sofern Benutzer gar nicht sehen dirfen, dass es
Uberhaupt Treffer gibt.

Aufruf: d3.hook.setProperty("no_results_refused", "0")

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1)
public class D3Hooks{

/1 3)
@Entrypoint(entrypoint = "hook_search_exit_30")

/1 (4)
@Condition(doctype = ["XXXX"])

/1 (5)
public int doSomething(D3Interface d3, User user, Integer errorCode, Integer noResults, Integer noRefused,
DocumentType docType)

/1(6)

d3.log.error("Hello world!");

/1 (7)
return O;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

d.3 hook & server scripting api (groovy) 50

d.veLop

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.7 Einspielen einer neuen Version (ImportNewVersionDocument)

4.1.7.1 hook_new_version_entry 10

Hinweis
Wird beim ValidateAttributes nextcall=ImportNewVersionDocument (ibergeben, wird die

Funktion auch aufgerufen.

Durch die Neustrukturierung der Dokumentablage mit d.3-Version 8 haben die Parameter
FileSource und FileDestination keinen sinnvollen Inhalt mehr.

Die Parameter sind weiterhin vorhanden, damit sich die Hook-Schnittstelle nicht &ndert und
missen somit weit entgegengenommen werden. Als Wert wird aber nur Leerstring ibergeben.

int hook_new_version_entry_10(D3Interface d3, Document doc, String fileSource, String fileDestination, User
user, DocumentType docType)

Aufrufzeitpunkt:

Es wurde gepriift, ob das Dokument bereits in d.3 existiert. Die Dokumenteigenschaften kénnen hier noch
gedndert werden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc Dokument, zu dem eine neue Dateiversion eingespielt
werden soll

fileSource abgekiindigt mit Version 8.0

fileDestination abgekiindigt mit Version 8.0

user der ausfihrende Benutzer

docType Dokumentart der zu importierenden Dateiversion

d.3 hook & server scripting api (groovy) 51

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

// (3)

@Entrypoint(entrypoint = "hook_new_version_entry_10")

/] (4)

@Condition(doctype = ["XXXX"])

//(5)

public int doSomething(D3Interface d3, Document doc, String fileSource, String fileDestination, User user,
DocumentType docType){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 52

d.veLop

4.1.7.2 hook_new_version_entry 20

Hinweis

Durch die Neustrukturierung der Dokumentablage mit d.3-Version 8 haben die Parameter
FileSource und FileDestination keinen sinnvollen Inhalt mehr.

Die Parameter sind weiterhin vorhanden, damit sich die Hook-Schnittstelle nicht &ndert und
missen somit weit entgegengenommen werden. Als Wert wird aber nur Leerstring ibergeben.

int hook_new_version_entry_20(D3Interface d3, Document doc, String fileSource, String fileDestination, User
user, DocumentType docType)

Aufrufzeitpunkt:
Es wurde erfolgreich gepriift, ob die neue Dateiversion existiert. Diese wurde noch nicht eingespielt.

Die Datenbanktransaktion wurde noch nicht gestartet. Die Dokumenteigenschaften sind validiert worden
und kénnen nicht mehr gedndert werden.

Parameter Beschreibung
d3 die d.3-Schnittstelle
doc Dokument, zu dem eine neue Dateiversion eingespielt

werden soll

fileSource abgekiindigt mit Version 8.0

fileDestination abgekiindigt mit Version 8.0

user der ausfihrende Benutzer

docType Dokumentart der zu importierenden Dateiversion

d.3 hook & server scripting api (groovy) 53

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

// (3)

@Entrypoint(entrypoint = "hook_new_version_entry_20")

/] (4)

@Condition(doctype = ["XXXX"])

//(5)

public int doSomething(D3Interface d3, Document doc, String fileSource, String fileDestination, User user,
DocumentType docType){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 54

d.veLop

4.1.7.3 hook_new_version_entry 30

Hinweis

Durch die Neustrukturierung der Dokumentablage mit d.3-Version 8 haben die Parameter
FileSource und FileDestination keinen sinnvollen Inhalt mehr.

Die Parameter sind weiterhin vorhanden, damit sich die Hook-Schnittstelle nicht &ndert und
missen somit weit entgegengenommen werden. Als Wert wird aber nur Leerstring ibergeben.

int hook_new_version_entry_30(D3Interface d3, Document doc, String fileSource, String fileDestination, User
user, DocumentType docType)

Aufrufzeitpunkt:
Wird sofort nach hook_new_version_entry_20 ausgefihrt.

Alle Angaben analog zu hook_new_version_entry 20.

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{

/] (3)
@Entrypoint(entrypoint = "hook_new_version_entry_30")

/] (4)

@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, Document doc, String fileSource, String fileDestination, User user,
DocumentType docType){

/1 (6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.
2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

d.3 hook & server scripting api (groovy) 55

d.veLop

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natlrlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.7.4 hook_new_version_exit_10

int hook_new_version_exit_10(D3Interface d3, Document doc, Integer errorCode, User user, DocumentType

docType)

Aufrufzeitpunkt:

Die Datenbanktransaktion wurde gestartet. Alle Eigenschaften, auch die Mehrfacheigenschaften (60er-

Felder) wurden aktualisiert.

Parameter
d3
doc

errorCode

user

docType

d.3 hook & server scripting api (groovy)

Beschreibung
die d.3-Schnittstelle
Dokument, zu dem eine neue Dateiversion importiert wurde

1: Beim Aktualisieren der Eigenschaften ist ein Fehler aufgetreten
0: Aktualisieren der Kenndaten erfolgreich

der ausfihrende Benutzer

Dokumentart der importierten Dateiversion

56

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)

@Entrypoint(entrypoint = "hook_new_version_exit_10")
/1 (4)

@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, Document doc, Integer errorCode, User user, DocumentType docType)
{
/1 (6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 57

d.veLop

4.1.7.5 hook_new_version_exit_20

Hinweis

Durch die Neustrukturierung der Dokumentablage mit d.3-Version 8 hat der Parameter
FileDestination keinen sinnvollen Inhalte mehr und ist deshalb abgekiindigt.

int hook_new_version_exit_20(D3Interface d3, Document doc, String fileDestination, Integer importOk, User
user, DocumentType docType)

Aufrufzeitpunkt:

Auch die Mehrfacheigenschaften (60er-Felder) wurden aktualisiert. Die neue Dateiversion wurde, ggf.
zusammen mit zugehorigen, abhdangigen Dateien, importiert.

Die Datenbanktransaktion wurde beendet (COMMIT oder ROLLBACK).

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc Dokument, zu dem eine neue Dateiversion importiert wurde
fileDestination abgekiindigt mit Version 8.0

ImportOk 1: Einspielung der neuen Version erfolgreich

0: Einspielung der neuen Version mit Fehler abgebrochen

user der ausfiihrende Benutzer

docType Dokumentart der importierten Dateiversion

d.3 hook & server scripting api (groovy) 58

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

// (3)

@Entrypoint(entrypoint = "hook_new_version_exit_20")

/] (4)

@Condition(doctype = ["XXXX"])

//(5)

public int doSomething(D3Interface d3, Document doc, String fileDestination, Integer importOk, User user,
DocumentType docType){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 59

d.veLop

4.1.7.6 hook_new_version_exit_30

int hook_new_version_exit_30(D3Interface d3, Document doc, Integer importOk, Integer errorCode, User user,

DocumentType docType)

Aufrufzeitpunkt:

wie bei hook_new_version_exit_20

Parameter
d3
doc

ImportOk

errorCode

user

docType

d.3 hook & server scripting api (groovy)

Beschreibung
die d.3-Schnittstelle
Dokument, zu dem eine neue Dateiversion importiert wurde

1: Einspielung der neuen Version erfolgreich
0: Einspielung der neuen Version mit Fehler abgebrochen

Im Fehlerfall (importOk=0): Fehlercode des zuvor aufgetretenen
Fehlers

der ausfiihrende Benutzer

Dokumentart der importierten Dateiversion

60

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

// (3)

@Entrypoint(entrypoint = "hook_new_version_exit_30")

/] (4)

@Condition(doctype = ["XXXX"])

//(5)

public int doSomething(D3Interface d3, Document doc, Integer importOk, Integer errorCode, User user,
DocumentType docType){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 61

d.veLop

4.1.8 Erzeugen/ Bearbeiten von TIFF- oder PDF-Dokumenten

4.1.8.1 hook_rendition_entry_10

int hook_rendition_entry_10(D3Interface d3, Document doc, User user)

Aufrufzeitpunkt:

Vor dem Start der Abbildungserstellung, wenn diese (ber einen d.3-Benutzer aufgerufen wurde (iiber
d.3-API oder Server-API). Wird nicht aufgerufen bei automatischem Aufruf Gber hinterlegte Regeln.

Hinweis

Der Aufruf kann durch Returnwert ungleich 0 abgebrochen werden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, von dem ein TIFF- oder PDF-Abbild erstellt werden
soll

user der d.3-Benutzer, der die Erstellung angefordert hat

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{
/] (3)
@Entrypoint(entrypoint = "hook_rendition_entry_10")
/] (4)
public int doSomething(D3Interface d3, Document doc, User user){

/1 (5)
d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

d.3 hook & server scripting api (groovy) 62

Kommentare zu den einzelnen Blocken

d.veLop

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

4, Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natirlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.8.2 hook_rendition_entry_20

int hook_rendition_entry_20(D3Interface d3, Document doc, DocumentType docType, String sourcePath, String

sourceFilename, String destFilename)

Aufrufzeitpunkt:

Direkt vor dem Senden des Erstellungsjobs an den d.ecs rendition service.

Hinweis

In dieser Hook-Funktion konnen iber die Hook-Eigenschaftsfelder rendition_parameter_name

und rendition_parameter_value Render-Optionen an den Rendition Service ibergeben werden.

Beispiel:

d3.hook.setProperty("rendition_parameter_name", 1, "PRINT_FORMAT")
d3.hook.setProperty("rendition_parameter_value", 1, "A2")

Parameter
d3

doc

docType

d.3 hook & server scripting api (groovy)

Beschreibung
die d.3-Schnittstelle

das Dokument von dem ein TIFF- oder PDF-Abbild erstellt
werden soll

Dokumentart dieses Dokuments

63

d.veLop

Parameter Beschreibung

sourcePath Quellpfad der Stammdatei
sourceFilename Dateiname der Stammdatei
destFilename Dateiname der fertigen Abbilddatei
// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1)
public class D3Hooks{

/1 3)
@Entrypoint(entrypoint = "hook_rendition_entry 20")

//(4)
@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, User user, DocumentType docType, Document searchContext){

/1(6)

d3.log.error("Hello world!");

/1 (7)
return O;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen benétigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

d.3 hook & server scripting api (groovy) 64

d.veLop

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.
7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 65

d.veLop
4.1.8.3 hook_rendition_exit_30

int hook_rendition_exit_30(D3Interface d3, Document doc, String destStatus, String tiffFilename, Integer
errorCode, String fileType)

Aufrufzeitpunkt:

Nach dem Abholen der fertigen TIFF-/PDF-Datei vom Rendition Server.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, von dem ein TIFF- oder PDF-Abbild erstellt
wurde

destStatus Zielstatus des Dokumentes ("B", "P", "F", "A")

tiffFilename Zielpfad + Dateiname der Abbild-Datei

errorCode 0=ok

-1 = Fehler beim Abholen der Datei vom Rendition Service ->
siehe d.3-Logdatei

fileType Dateityp, der gerendert wurde ("P1", "T1", "TXT")

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{
/] (3)
@Entrypoint(entrypoint = "hook_rendition_exit_30")
/] (4)
public int doSomething(D3Interface d3, Document doc, String destStatus, String tiffFilename, Integer
errorCode, String fileType){
/1 (5)
d3.log.error("Hello world!");
/1 (6)
return O;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

d.3 hook & server scripting api (groovy) 66

d.veLop

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natirlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.9 Login

4.1.9.1 hook_val_passwd_entry_10

int hook_val_passwd_entry_10(D3Interface d3, User user, String appLanguage, String appVersion)

Aufrufzeitpunkt:

Hook-Funktion vor der Priifung von Benutzername und Passwort durch API-Funktion

ValidatePasswordForUser.

Ein langer Benutzername ist bereits gegen den internen Namen getauscht worden.

Anmeldedaten kénnen nicht verandert werden.

Parameter
d3

user

appLanguage

appVersion

Riickgabe:

d.3 hook & server scripting api (groovy)

Beschreibung
die d.3-Schnittstelle

anzumeldender Benutzer (d.3-Kurz- oder Langname; LDAP-
Benutzername)

SprachlID, die von der Anwendung (ibergeben wurde, z.B.
"049"=deutsch, "001"=englisch
Versionsstring, der von der Anwendung Gbergeben wurde

Zeichen 1.3 Modulkennung z.B. 200 fir d.xplorer
Zeichen 4..6: Version des Moduls z.B. 800 fiir Version 8.0.0
Zeichen 7.8 Loglevel, z.B. 9 fir DEBUG

67

d.veLop

Ein Wert != 0 fiihrt zur Anderung des Riickgabewertes von API-Funktion ValidatePasswordForUser und
somit zum Abbruch des Login.

Der Rickgabewert des Hook wird von 9500 abgezogen, d.h. -1 =>9500-(-1) = 9501.

Diese Zahl wird an den Client zuriickgegeben und ist somit in der msglib.usr zu hinterlegen.

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/] 3)

@Entrypoint(entrypoint = "hook_val_passwd_entry_10")

/] (4)

public int doSomething(D3Interface d3, User user, String appLanguage, String appVersion){
/1 (5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 68

d.veLop

4.1.9.2 hook_val_passwd_exit_10

int hook_val_passwd_exit_10(D3Interface d3, int errorCode, User user, String appLanguage, String appVersion)

Aufrufzeitpunkt:

Test von Benutzername und Passwort gegen d.3-Benutzerstamm oder auch ggf. gegen einen Directory

Server (per LDAP/Kerberos) sind gelaufen.

Das Ergebnis steht fest und wird als Parameter "error" ibergeben.

Eingabeparameter:

Parameter
d3

errorCode

user

appLanguage

appVersion

Riickgabe:

Beschreibung
die d.3-Schnittstelle

Fehlercode der Benutzername/Passwort Priifung; z.B. 0002 =
Benutzername/Passwort ungiiltig; 0 = Erfolg

anzumeldender d.3-Benutzer

Sprach-ID, die von der Anwendung (ibergeben wurde, z.B.
"049"=deutsch, "001"=englisch

Versionsstring, der von der Anwendung (ibergeben wurde

Ein Rickgabewert != o fihrt zum Abbruch (siehe hook_val_passwd_entry_10).

d.3 hook & server scripting api (groovy)

69

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_val_passwd_exit_10")

/1 (4)
@Condition(doctype = ["XXXX"])

/1 (5)
public int doSomething(D3Interface d3, int errorCode, User user, String appLanguage, String appVersion){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.10 Loschen eines Dokuments (DeleteDocument)

4.1.10.1 hook_delete_entry_10

int hook_delete_entry_10(D3Interface d3, Document doc, User user, DocumentType docType)

Aufrufzeitpunkt:

d.3 hook & server scripting api (groovy) 70

d.veLop

* Vor dem Léschen des Dokuments. Es wurde erfolgreich gepriift, ob der Benutzer das Dokument
l6schen darf.
« Der Loschvorgang kann hier noch abgebrochen werden durch Riickgabe eines Returncodes ungleich

0.
Parameter Beschreibung
d3 die d.3-Schnittstelle
doc das zu l6schenden Dokument
user der Benutzer, der das Dokument l6schen mochte
docType Dokumentart des zu l6schenden Dokuments

Privilegiertes Loschen:

Das Loschen von Dokumenten erfolgt per Default immer durch Verschieben in den internen Papierkorb.
Mit Hilfe des privilegierten Loschens kann eine Dokumentversion allerdings sofort vollstdndig und
unwiederbringlich aus dem System (Datenbank, Dokumentenbaum und in einigen Fallen auch vom
Sekundarspeichersystem) geléscht werden. Hierfiir muss eine separate Lizenz bei der d.velop AG
erworben und gegebenenfalls auch Beratung beauftragt werden. In diesem Einsprungpunkt kann das
privilegierte Loschen dann aktiviert werden durch setzen der Hook-Eigenschaft "DELETE_PRIVILEGED".

Eigenschaft Beschreibung
DELETE_PRIVILEGED "0": Loschen durch Verschieben in den Papierkorb
(Standardwert)

"1": Privilegiertes Léschen. Entfernt Dokumente
unwiederbringlich aus dem System.

Beispiel:

d3.hook.setProperty("DELETE_PRIVILEGED", "1")

Hinweis

Weitere Informationen zum Léschen von Dokumenten finden sie im Kapitel Aufbewahrungsfristen
und Loschen von Dokumenten

d.3 hook & server scripting api (groovy) 71

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_delete_entry_10")

/1 (4)
@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.10.2 hook_delete_exit_10

int hook_delete_exit_10(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType docType)

Aufrufzeitpunkt:

d.3 hook & server scripting api (groovy) 72

d.veLop

* Nach dem Léschen des Dokuments. Entsprechend kann der Léschvorgang in diesem
Einsprungpunkt nicht mehr abgebrochen werden.
» Ob der Loschvorgang erfolgreich war, kann (iber den Parameter errorCode gepriift werden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das zu l6schende Dokument

user Benutzer, der das Dokument l&scht
errorCode 0: Dokument wurde erfolgreich geldscht

sonst: Loschen fehlgeschlagen; Fehlercode

docType Dokumentart des zu |6schenden Dokuments

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1)
public class D3Hooks{

/1 3)
@Entrypoint(entrypoint = "hook_delete_exit_10")

//(4)

@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType
docType){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return O;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.
2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

d.3 hook & server scripting api (groovy) 73

d.veLop

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benétigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.11 Loschen von Verknipfungen (Unlink)

4.1.11.1 hook_unlink_entry_30

int hook_unlink_entry_30(D3Interface d3, Document docFather, Document docChild)

Aufruf:

Direkt vor Ausfiihrung des Datenbankbefehl zum Lésen der Verknipfung.

Parameter Beschreibung

d3 die d.3-Schnittstelle
docFather das Ubergeordnete Dokument
docChild das untergeordnete Dokument

d.3 hook & server scripting api (groovy) 74

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_unlink_entry_30")

/1 (4)
public int doSomething(D3Interface d3, Document docFather, Document docChild){
/1 (5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.11.2 hook_unlink_exit_10

int hook_unlink_exit_10(D3Interface d3, Document docFather, Document docChild, Integer unlinkErrorCode,
Integer errorCode)

Aufruf:

Nach der Verknipfungslosung zweier Dokumente.

d.3 hook & server scripting api (groovy) 75

d.veLop

Parameter Beschreibung

d3 die d.3-Schnittstelle

docFather das Gbergeordnete Dokument
docChild das untergeordnete Dokument
unlinkErrorCode 0: Verkniipfungslosung war erfolgreich

-1: Vater und Kind sind identisch bzw. einer der beiden
existiert gar nicht

-2: Die beiden Dokumente sind nicht verknipft

-4: Beim Entfernen der Verknipfung trat ein Datenbankfehler
auf (s. dazu errorcCode)

errorCode 0=0k
sonst Datenbank- oder Hook-Fehler

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

//(3)
@Entrypoint(entrypoint = "hook_unlink_exit_10")

/1 (4)
public int doSomething(D3Interface d3, Document docFather, Document docChild, Integer unlinkErrorCode,
Integer errorCode){

1/(5)

d3.log.error("Hello world!");

/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

d.3 hook & server scripting api (groovy) 76

d.veLop

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.12 Postkorb (SendHoldFile)
4.1.12.1 hook_ack_holdfile_exit_10

int hook_ack_holdfile_exit_10(D3Interface d3, User user, Document doc, Integer holdfileld)

Quittieren eines Postkorbeintrags.
Aufrufzeitpunkt:

Nach dem Quittieren eines Postkorbeintrages durch Aufruf der API-Funktion
AcknowledgeReceivedHoldFile.

Verhindern l&sst sich ein Quittieren nicht mehr, da der Aufruf nach dem Quittieren stattfindet.

Parameter Beschreibung

d3 die d.3-Schnittstelle

user Benutzer, der die Quittierung ausgelost hat
doc das quittierte Dokument

holdfileld ID des Postkorbeintrags

d.3 hook & server scripting api (groovy) 77

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_ack_holdfile_exit_10")

/1 (4)
public int doSomething(D3Interface d3, User user, Document doc, Integer holdfileld){

/1(5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.13 Redlining (WriteRedline)
4.1.13.1 hook_write_redline_entry_10e

int hook_write_redline_entry_10(D3Interface d3, Document doc, User user, DocumentType docType)

Aufrufzeitpunkt:

Die Funktion wird vor dem Schreiben einer Redlining-Datei ausgefinhrt.

d.3 hook & server scripting api (groovy) 78

d.veLop

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument zu dem die Redlining-Datei abgelegt wird
user der ausfiihrende Benutzer

docType Dokumentart des Dokuments

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{
/1 (3)
@Entrypoint(entrypoint = "hook_write_redline_entry_10")
/] (4)
@Condition(doctype = ["XXXX"])

/1 (5)
public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType){

/1 (6)

d3.log.error("Hello world!");

/1(7)

return O;

}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blécken

1.
2.

Import der bendétigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benétigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss

d.3 hook & server scripting api (groovy) 79

d.veLop

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.13.2 hook_write_redline_exit_30

int hook_write_redline_exit_30(D3Interface d3, Document doc, User user, DocumentType docType)

Aufruf:

Nach dem Schreiben einer Redlining-Datei (per d.3-API-Call WriteRedline).

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument zu dem eine Redlining-Datei abgelegt wurde
user der ausfihrende Benutzer

docType Dokumentart des Dokuments

d.3 hook & server scripting api (groovy) 80

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)

@Entrypoint(entrypoint = "hook_write_redline_exit_30")
/1 (4)

@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 81

d.veLop

4.1.14 Senden einer Wiedervorlage (SendHoldfile)
4.1.14.1 hook_holdfile_entry_10

int hook_holdfile_entry_10(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup
sender, Integer chainld, String notice, String wvType)

Aufrufzeitpunkt:
Wird aufgerufen, bevor die Ubergabeparameter gepriift werden.
Die Werte der Ubergabeparameter sind auch noch in den folgenden Hook-Eigenschaftsfeldern verfiigbar:

d3server_empfaenger_wv[1]
d3server_sender_wv[1]
d3server_kette_id

Diese Werte konnen per d3.hook.property() Aufruf verandert werden.

Parameter Beschreibung

doc das Dokument, welches in die Wiedervorlage gestellt werden soll
recipient Benutzer- oder Gruppenobjekt des Empfangers

sender Benutzer- oder Gruppenobjekt des Senders

chainld Ketten-ID, die fir diesen Postkorbeintrag verwendet werden soll
notice Betrefftext der Postkorbbenachrichtigung

wvTyp Typ-ID der Postkorbbenachrichtigung

Maogliche Werte:

= normale Postkorbbenachrichtigung
"W" = Workflow-Benachrichtigung
... = sonstige (ggf. selbst definierte Werte)

d.3 hook & server scripting api (groovy) 82

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_holdfile_entry_10")

/1 (4)
public int doSomething(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup sender,
Integer chainld, String notice, String wvType }{

/1(5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.14.2 hook_holdfile_entry_20

int hook_holdfile_entry_20(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup
sender, Integer chainld, String notice, String wvType)

Aufrufzeitpunkt:

Wird aufgerufen, wenn Datum etc. bereits auf Plausibilitat gepriift worden sind. Es sind aber noch nicht
die Rechte des Empfangers auf das Dokument gepriift worden.

d.3 hook & server scripting api (groovy) 83

d.veLop

Die Werte sind hier nicht mehr anderbar.

Eingabeparameter siehe hook_holdfile_entry_10 (doc_id, recipient, sender, chain_id).

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

//(3)

@Entrypoint(entrypoint = "hook_holdfile_entry_20")

//(4)

public int doSomething(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup sender,
Integer chainld, String notice, String wvType){

1/(5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafiir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.14.3 hook_holdfile_entry_30

int hook_holdfile_entry_30(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup
sender, Integer chainld, String notice, String wvType)

d.3 hook & server scripting api (groovy) 84

d.veLop

Aufrufzeitpunkt:

Wird aufgerufen, direkt vor dem Eintrag in die Datenbank, wenn auch schon die Rechte des Empfangers
auf das Dokument gepriift wurden. Die Werte sind hier nicht mehr dnderbar.

Eingabeparameter:

siehe hook_holdfile_entry 10 (doc_id, recipient, sender, chain_id).

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

//(3)

@Entrypoint(entrypoint = "hook_holdfile_entry_30")

//(4)

public int doSomething(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup sender,
Integer chainld, String notice, String wvType){

1/(5)

d3.log.error("Hello world!");

/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 85

d.veLop

4.1.14.4 hook_holdfile_exit_10

int hook_holdfile_exit_10(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup sender,
Integer chainld, Integer errorCode)

Aufrufzeitpunkt:

Direkt nach dem Datenbank-Befehl, der die Wiedervorlage aktiviert.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, fiir das eine Postkorbbenachrichtigung eingestellt
wurde

recipient der Empfanger der Benachrichtigung

sender der Absender der Benachrichtigung

chainld Ketten-ID, die fir diesen Postkorbeintrag verwendet werden soll

errorCode 0: alles OK

sonst: Datenbank-Fehlernummer beim Eintrag der Wiedervorlage
in die Datenbank

d.3 hook & server scripting api (groovy) 86

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)

@Entrypoint(entrypoint = "hook_holdfile_exit_10")

/1 (4)

@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, Document doc, UserOrUserGroup recipient, UserOrUserGroup sender,
Integer chainld, Integer errorCode){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 87

d.veLop

4.1.15 Senden von E-Mails bei Wiedervorlage

4.1.15.1 hook_send_email_entry 10

int hook_send_email_entry_10(D3Interface d3, Document doc, String recipient, String sender, String subject,

Integer trigger, String url_link)

Aufruf:

Vor dem Versenden einer E-Mail.

Parameter
d3

doc

recipient
sender

subject

trigger

url_link

Beschreibung
die d.3-Schnittstelle

das Dokument, fir das die E-Mail zur Postkorbnachricht gesendet
wird

Empfanger der E-Mail (d.3-Benutzername oder E-Mail-Adresse)
Absender der E-Mail (d.3-Benutzername)

Betrefftext

0 = keine Wiedervorlage-E-Mail
1 = E-Mail fir Wiedervorlage
2 = E-Mail fir Workflow-Wiedervorlage

HTTP-Link fir die Ansicht in d.3one
Hinweis: Der Parameter ist nur gefiillt wenn d.3one installiert ist.

In dieser Hook-Funktion kénnen E-Mail-Eigenschaften (iber die folgenden Hook-Eigenschaftswerte gesetzt

werden:

Eigenschaft

api_email_body file

api_email_mail_format

api_email_attach

d.3 hook & server scripting api (groovy)

Beschreibung

E-Mail-Body aus einer Datei laden. Name und Pfad einer
Datei, die den Body-Text enthalt

"html": HTML-Format
sonst: Text-Format (Standard)

1 = das Dokument als Anhang an die E-Mail hdngen
0 = Dokument nicht anhdngen (Standard)

88

d.veLop

d3.hook.setProperty("api_email_body_file", "D:/hooks/data/myBody.html")
d3.hook.setProperty("api_email_mail_format", "html")
d3.hook.setProperty("api_email_attach", "1")

Die Eigenschaften werden jeweils nach erfolgtem E-Mail-Versand zuriickgesetzt. Die E-Mail-Funktion kann
durch Return-Wert ungleich 0 abgebrochen werden.

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

//(3)
@Entrypoint(entrypoint = "hook_send_email_entry_10")
//(4)
public int doSomething(D3Interface d3, Document doc, String recipient, String sender, String subject, Integer
trigger, String url_link){
//(5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 89

d.veLop

4.1.15.2 hook_send_email_entry_20

int hook_send_email_entry_20(D3Interface d3, Document doc, String recipient, String sender, String subject,

Integer trigger)

Aufruf:

Vor dem Versenden einer E-Mail. E-Mailadresse wurde ermittelt, Gruppenauflosung wurde durchgefiihrt.

Hinweis

Die Hook-Funktion wird nur einmal aufgerufen, also nicht fiir jede versendete Mail separat.

Parameter
d3

doc

recipient
sender
subject

trigger

url_link

Beschreibung
die d.3-Schnittstelle

das Dokument, fir das die E-Mail zur Postkorbnachricht gesendet
wird

Empfanger der E-Mail (d.3-Benutzername oder E-Mail-Adresse)
Absender der E-Mail (d.3-Benutzername)

Betrefftext

0 = keine Wiedervorlage-E-Mail

1 = E-Mail fir Wiedervorlage

2 = E-Mail fir Workflow-Wiedervorlage

HTTP-Link fir die Ansicht in d.3one
Hinweis: Der Parameter ist nur gefillt wenn d.3one installiert ist.

In dieser Hook-Funktion kénnen E-Mail-Eigenschaften (iber die folgenden Hook-Eigenschaftswerte gesetzt

werden:

Eigenschaft

api_email_body file

api_email_mail_format

api_email_attach

d.3 hook & server scripting api (groovy)

Beschreibung

E-Mail-Body aus einer Datei laden. Name und Pfad einer
Datei, die den Body-Text enthalt

"html": HTML-Format
sonst: Text-Format (Standard)

1 = das Dokument als Anhang an die E-Mail hdngen
0 = Dokument nicht anhadngen (Standard)

90

d.veLop

d3.hook.setProperty("api_email_body_file", "D:/hooks/data/myBody.html")
d3.hook.setProperty("api_email_mail_format", "html")
d3.hook.setProperty("api_email_attach", "1")

Die Eigenschaften werden jeweils nach erfolgtem E-Mail-Versand zuriickgesetzt. Die E-Mail-Funktion kann
durch Return-Wert ungleich 0 abgebrochen werden.

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_send_email_entry_20")

/] (4)
public int doSomething(D3Interface d3, Document doc, String recipient, String sender, String subject, Integer
trigger){
//(5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 91

d.veLop

4.1.15.3 hook_send_email_exit_10
int hook_send_email_exit_10(D3Interface d3, Document doc, String recipient, String sender, String subject,
Integer retCode)

Aufruf:

Nach dem Versenden einer E-Mail.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument fir die die E-Mail versendet wurde

recipient Empfanger der E-Mail (d.3-Benutzername oder E-Mail-Adresse)
sender Absender der E-Mail (d.3-Benutzername)

subject Betrefftext

retCode 1 = Nachricht wurde gesendet

0 = Nachricht konnte nicht gesendet werden

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{

/] (3)

@Entrypoint(entrypoint = "hook_send_email_exit_10")

/] (4)

public int doSomething(D3Interface d3, Document doc, String recipient, String sender, String subject, Integer
retCode){

/1 (5)

d3.log.error("Hello world!");
/1 (6)
return O;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

d.3 hook & server scripting api (groovy) 92

d.veLop

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benétigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.16 Sperren eines Dokuments

4.1.16.1 hook_block_entry 10

int hook_block_entry_10(D3Interface d3, Document doc, User user)

Aufrufzeitpunkt:

Vor dem Sperren eines Dokuments im Status "Freigabe".

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das zu sperrende Dokument
user der ausfihrende Benutzer

d.3 hook & server scripting api (groovy) 93

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_block_entry_10")

/1(4)

public int doSomething(D3Interface d3, Document doc, User user){

/1(5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.16.2 hook_block_exit_10

int hook_block_exit_10(D3Interface d3, Document doc, User user)

Aufrufzeitpunkt:

Nach dem Sperren eines Dokuments im Status "Freigabe".

Parameter Beschreibung

d3 die d.3-Schnittstelle

d.3 hook & server scripting api (groovy) 94

d.veLop

Parameter Beschreibung
doc das gerade gesperrte Dokument
user der ausfihrende Benutzer

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{

/] (3)
@Entrypoint(entrypoint = "hook_block_exit_10")
/] (4)

public int doSomething(D3Interface d3, Document doc, User user){

/1 (5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt (ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 95

d.veLop

4.1.17 Stammdaten
4.1.17.1 hook_on_user_change exit_10

int hook_on_user_change_exit_10(D3Interface d3, User actionUser, User newUser, User oldUser)

In diesem Einsprungspunkt kdnnen Anpassungen an einem gerade gednderten oder neu anzulegenden
Benutzerobjekt vorgenommen werden.

Weder das Anlegen des Benutzers, noch ein Andern des Benutzers kann in diesem Hook verhindert
werden. D.h., macht dieser Hook Anderungen am Benutzerobjekt, die nicht in die Datenbank geschrieben
werden konnen (beispielsweise, weil die maximale Spaltenldangen iberschritten wurden), wird das Objekt
so angelegt, als wdre der Hook nicht ausgefiihrt worden.

Parameter Beschreibung

d3 die d.3-Schnittstelle

actionUser der ausfiihrende Benutzer
newUser der neue bzw. gednderte Benutzer
oldUser das ungednderte Benutzer-Objekt

Uber das newUser Objekt kénnen mittels der entsprechenden Setter folgende Benutzereigenschaften

gedndert werden:
Name der Eigenschaft Beschreibung
email E-Mail-Adresse des Benutzers
phone Telefonnummer des Benutzers
plant Werk des Benutzers
department Abteilung des Benutzers
optField(int idx) Optionale Felder zum Benutzer (Array-Indizes 1-10)

Wird der Hook mit einem Returncode ungleich "0" beendet, werden die Anderungen des Hooks am
Benutzerobjekt ignoriert.

d.3 hook & server scripting api (groovy) 96

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)

@Entrypoint(entrypoint = "hook_on_user_change_exit_10")

/1 (4)

public int doSomething(D3Interface d3, User actionUser, User newUser, User oldUser){

/1(5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.18 Statustransfer
4.1.18.1 hook_transfer_entry 30
int hook_transfer_entry_30(D3Interface d3, User user, Document doc, Integer fileld, String sourceStatus, String

destStatus, UserOrUserGroup destEditor)

Aufrufzeitpunkt:

Vor dem Statustransfer eines Dokuments in einen anderen Status.

d.3 hook & server scripting api (groovy) 97

d.veLop

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausfihrende Benutzer

doc das Dokument, das transferiert werden soll
fileld File-ID der Dokumentversion

sourceStatus Quellstatus des Dokuments (B, P, F, A)
destStatus Zielstatus des Dokuments (B, P, A)
destEditor Zielstatus ,Bearbeitung":

Benutzer- oder Gruppenname
Zielstatus ,Prifung™:
Gruppenname

Sonst leer

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.UserOrUserGroup;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{

/1 (3)

@Entrypoint(entrypoint = "hook_transfer_entry_30")

/1 (4)

public int doSomething(D3Interface d3, User user, Document doc, Integer fileld, String sourceStatus, String
destStatus, UserOrUserGroup destEditor){

11(5)

d3.log.error("Hello world!");

/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.
2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

d.3 hook & server scripting api (groovy) 98

d.veLop

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.18.2 hook_transfer_exit_30
int hook_transfer_exit_30(D3Interface d3, User user, Document doc, Integer fileld, String sourceStatus, String
destStatus, UserOrUserGroup destEditor, Integer errorCode)

Aufrufzeitpunkt:

Nach dem Statustransfer eines Dokuments in einen anderen Status.

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausfihrende Benutzer

doc das Dokument, das transferiert wurde

fileld File-ID der Dokumentversion

sourceStatus Quellstatus des Dokumentes (B, P, F, A)

destStatus Zielstatus des Dokumentes (B, P, A)

destEditor Zielstatus ,Bearbeitung”: Benutzer- oder Gruppenobjekt
Zielstatus ,Priifung”: Benutzer- oder Gruppenobjekt; null falls keine Priifergruppe
angegeben

errorCode 0 = Statustransfer erfolgreich

Fehlercode sonst

d.3 hook & server scripting api (groovy) 99

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.UserOrUserGroup;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_transfer_exit_30")

/] (4)
public int doSomething(D3Interface d3, User user, Document doc, Integer fileld, String sourceStatus, String
destStatus, UserOrUserGroup destEditor, Integer errorCode){

/1(5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden" Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.19 Validieren von Eigenschaftswerten (ValidateAttributes)
4.1.19.1 hook_validate_import_entry 10

int hook_validate_import_entry_10(D3Interface d3, User user, DocumentType docType, Document doc, String
nextcall)

d.3 hook & server scripting api (groovy) 100

d.veLop

Hinweis

Falls diese Hook-Funktion einen Wert ungleich 0 liefert, wird die Validierung der Suchbegriffe
abgebrochen.

Die API-Funktion ValidateAttributes liefert dann den Wert 9500-(X) zurlick (allgemeiner
Fehlercode in kundenspezifischer Hook-Funktion). "X" ist hier der Riickgabewert des Hooks.

Es wird empfohlen, im Hook einen negativen Return-Wert zu verwenden, damit die Ausgabe des
API-Calls >9500 ist, da dieser Bereich freigehalten wurde.

Es ist dann maoglich, auf den Client-Rechnern (ber die Client-Verteilung eine msglib.usr mit einem
beliebigen Text fir den Returncode (z.B. 9542) zu hinterlegen.

Aufrufzeitpunkt:

Es wurden lediglich die Eigenschaften des neu zu importierenden Dokuments zugewiesen.

Parameter Beschreibung
d3 die d.3-Schnittstelle
user der ausfiihrende Benutzer
docType Dokumentart des zu validierenden Dokuments
doc das Dokument, das vor dem Import validiert werden soll
nextcall der Wert des Parameters "nextcall" der API-Funktion
ValidateAttributes
Hinweis

Diese Funktion wird im Kontext der API-Funktion ValidateAttributes ausgefiihrt. Das bedeutet,
dass die Funktion nicht ausgefihrt wird, wenn ein Dokument tiber den Hostimport importiert wird.
Sie wird ausgefiihrt, wenn man einen Import Gber d.3 import ausfiihrt, da von diesem Programm
vor dem Import eines Dokuments diese API-Funktion aufgerufen wird.

d.3 hook & server scripting api (groovy) 101

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_validate_import_entry_10")

/1 (4)
@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, User user, DocumentType docType, Document doc, String nextcall){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.19.2 hook_validate_search_entry 10

int hook_validate_search_entry_10(D3Interface d3, User user, DocumentType docType, Document
searchContext, String nextcall)

d.3 hook & server scripting api (groovy) 102

d.veLop

Hinweis

Falls diese Hook-Funktion einen Wert ungleich 0 liefert, wird die Validierung der Suchbegriffe
abgebrochen. Die API-Funktion ValidateAttributes liefert dann den Wert 9500-(X) zurlick
(allgemeiner Fehlercode in kundenspezifischer Hook-Funktion). "X" ist hier der Riickgabewert des
Hooks. Es wird empfohlen, im Hook einen negativen Return-Wert zu verwenden, damit die
Ausgabe des API-Calls >9500 ist, da dieser Bereich freigehalten wurde. Es ist dann maglich, auf den
Client-Rechnern tiber die Client-Verteilung eine msglib.usr mit einem beliebigen Text fir den
Returncode (z.B. 9542) zu hinterlegen.

Aufrufzeitpunkt:

Es wurden lediglich die Suchbegriffe in die entsprechenden Kontextfelder transportiert.

Parameter Beschreibung

d3 die d.3-Schnittstelle

user der ausfiihrende Benutzer

docType Dokumentart der gesuchten Dokumente, wenn dokumentart-

spezifisch gesucht wird;
ansonsten leeres Dokumentart-Objekt

searchContext Dokument-Objekt iber das die Suchbegriffe ausgelesen und
gedndert werden kdonnen

nextcall der Wert des Parameters "nextcall" der API-Funktion
ValidateAttributes

Diese Funktion wird im Kontext der API-Funktion vValidateAttributes ausgefihrt.

d.3 hook & server scripting api (groovy) 103

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)

@Entrypoint(entrypoint = "hook_validate_search_entry_10")
/1 (4)

@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, User user, DocumentType docType, Document searchContext, String
nextcall){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 104

d.veLop

4.1.19.3 hook_validate_update_entry_10

int hook_validate_update_entry_10(D3Interface d3, User user, DocumentType docType, Document doc, String

nextcall)

Parameter
d3

user
docType

doc

nextcall

Beschreibung

die d.3-Schnittstelle

der ausfihrende Benutzer

Dokumentart des zu aktualisierenden Dokuments

das d.3-Dokument, dessen Eigenschaften aktualisiert werden
sollen.

Diese konnen hier noch gedndert werden.

sonst, wenn keine Dokument-ID vorgegeben, wird hier Leerstring
Ubergeben

der Wert des Parameters "nextcall" der API-Funktion
ValidateAttributes

Diese Hook-Funktion wird im Kontext der API-Funktion ValidateAttributes aufgerufen.

Wird eine Eigenschaft bei mehreren Dokumenten gleichzeitig mit Hilfe des changeatt.dxp gedndert, greift
der Einsprungpunkt hook_validate_update_entry_10 nicht, da keine Validierung (ValidateAttributes)

stattfindet.

Diese Validierung findet statt, wenn ein Attribut bei einem Dokument Giber die Eigenschaften angepasst

wird.

d.3 hook & server scripting api (groovy)

105

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_validate_update_entry_10")

/1 (4)
@Condition(doctype = ["XXXX"])

/1 (5)

public int doSomething(D3Interface d3, User user, DocumentType docType, Document doc, String nextcall){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 106

d.veLop

4.1.20 Verknipfen von Dokumente bzw. Akten (LinkDocuments)

4.1.20.1 hook_link_entry_30

int hook_link_entry_30(D3Interface d3, Document docFather, Document docChild)

Hinweis

Diese Hook-Funktion wird nur aktiviert, wenn zuvor kein Fehler aufgetreten ist. Liefert diese
Funktion einen Wert ungleich 0, wird die Verknipfungsaktion mit Fehler abgebrochen.

Aufrufzeitpunkt:

Alle Verknipfungsdaten sind korrekt. Direkt vor dem Datenbank-Befehl, der die Verknipfung registriert.

Parameter Beschreibung
docFather das Ubergeordnete Dokument bzw. die Akte
docChild das untergeordnete Dokument

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1)
public class D3Hooks{
/1 3)
@Entrypoint(entrypoint = "hook_link_entry_30")
//(4)
public int doSomething(D3Interface d3, Document docFather, Document docChild){
/1 (5)
d3.log.error("Hello world!");

/1 (6)
return O;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

d.3 hook & server scripting api (groovy) 107

d.veLop

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.20.2 hook_link_exit_10

int hook_Llink_exit_10(D3Interface d3, Document docFather, Document docChild, Integer errorCode)

Aufrufzeitpunkt:

Direkt nach Ausfiihrung des Datenbank-Befehls, der die Verkniipfung eintragt.

Parameter Beschreibung
docFather das Ubergeordnete Dokument, bzw. die Akte
docChild das untergeordnete Dokument
errorCode 0: Verkniipfung war erfolgreich
;11i:cxtater und Kind sind identisch bzw. einer der beiden existiert gar

-2: Die beiden Dokumente sind bereits verknipft

-3: Die beiden Dokumente sind bereits in umgekehrter Hierarchie
miteinander verknipft

-4: Beim Eintrag der Verknipfung in die Datenbank trat ein
Datenbankfehler auf (s. dazu ,error_number®”)

error_number <> 0:

-91: Die beiden Dokumente sind bereits in umgekehrter Hierarchie
miteinander verknipft

sonst

Datenbank-Fehlernummer beim Eintrag der Verknipfung in die
Datenbank

d.3 hook & server scripting api (groovy) 108

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)

@Entrypoint(entrypoint = "hook_link_exit_10")

/1 (4)

public int doSomething(D3Interface d3, Document docFather, Document docChild, Integer errorCode){

/1(5)

d3.log.error("Hello world!");
/1 (6)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.21 Web-Vero6ffentlichung
4.1.21.1 hook_webpublish_entry 10

int hook_webpublish_entry_10(D3Interface d3, Document doc, User user, Integer publish)

Aufrufzeitpunkt:

Vor bzw. nach dem Veroéffentlichen eines Dokuments fir das Web.

d.3 hook & server scripting api (groovy) 109

d.veLop

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, das veréffentlicht/zuriickgezogen werden soll
user der ausfiihrende Benutzer

publish 1: Dokument wird veréffentlicht

0: Veroffentlichung wird zuriickgezogen

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_webpublish_entry_10")

/1 (4)

public int doSomething(D3Interface d3, Document doc, User user, Integer publish){

/1 (5)

d3.log.error("Hello world!");

/1 (6)
return O;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der bendétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden" Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 110

d.veLop
4.1.21.2 hook_webpublish_entry 20

int hook_webpublish_entry_20(D3Interface d3, Document doc, User user, DocumentType docType, Integer
publish)

Aufrufzeitpunkt:

Vor bzw. nach dem Vero6ffentlichen eines Dokuments fir das Web.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc das Dokument, das veroffentlicht/zuriickgezogen werden soll
user der ausfihrende Benutzer

docType die zugehorige Dokumentart

publish 1: Dokument wird veréffentlicht

0: Veroffentlichung wird zurickgezogen

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_webpublish_entry_20")

/] (4)
@Condition(doctype = ["XXXX"])

/1 (5)
public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType, Integer publish){
/1 (6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

d.3 hook & server scripting api (groovy) 111

d.veLop

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

Die unterschiedlichen Eintrittstypen benétigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.21.3 hook_webpublish_entry_30

int hook_webpublish_entry_30(D3Interface d3, Document doc, User user, DocumentType docType, Integer
publish)

Aufrufzeitpunkt:

Vor bzw. nach dem Veroéffentlichen eines Dokuments fir das Web.

d3 die d.3-Schnittstelle

doc das Dokument, das veroffentlicht/zurickgezogen werden soll
user der ausfiihrende Benutzer

docType die zugehdrige Dokumentart

publish 1: Dokument wird veréffentlicht

0: Veroffentlichung wird zuriickgezogen

d.3 hook & server scripting api (groovy) 112

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

/1 (3)
@Entrypoint(entrypoint = "hook_webpublish_entry_30")

/1 (4)
@Condition(doctype = ["XXXX"])

/1 (5)
public int doSomething(D3Interface d3, Document doc, User user, DocumentType docType, Integer publish){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.21.4 hook_webpublish_exit_10

int hook_webpublish_exit_10(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType
docType, Integer publish)

d.3 hook & server scripting api (groovy) 113

d.veLop

Aufrufzeitpunkt:

Vor bzw. nach dem Veroffentlichen eines Dokuments fiir das Web.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc_id das Dokument, das veréffentlicht/zurickgezogen wurde
user der ausfiihrende Benutzer

errorCode 0= Aktion erfolgreich

Fehlercode sonst
docType Dokumentartkdirzel

publish 1: Dokument wurde veréffentlicht
0: Veroffentlichung wurde zuriickgezogen

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1 (2)
public class D3Hooks{

// (3)

@Entrypoint(entrypoint = "hook_webpublish_exit_10")

/] (4)

@Condition(doctype = ["XXXX"])

//(5)

public int doSomething(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType docType,
Integer publish){

/1(6)

d3.log.error("Hello world!");
/1(7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

d.3 hook & server scripting api (groovy) 114

d.veLop

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem

Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte

Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier

natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

4.1.21.5 hook_webpublish_exit_20

int hook_webpublish_exit_20(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType

docType, Integer publish)

Aufrufzeitpunkt:

Vor bzw. nach dem Veroéffentlichen eines Dokuments fir das Web.

Parameter
d3

doc_id
user

errorCode

docType

publish

d.3 hook & server scripting api (groovy)

Beschreibung

die d.3-Schnittstelle

das Dokument, das veroffentlicht / zuriickgezogen wurde
der ausfihrende Benutzer

0= Aktion erfolgreich
Fehlercode sonst

Dokumentartkirzel

1: Dokument wurde veroffentlicht
0: Veroffentlichung wurde zuriickgezogen

115

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

// (3)

@Entrypoint(entrypoint = "hook_webpublish_exit_20")

/] (4)

@Condition(doctype = ["XXXX"])

//(5)

public int doSomething(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType docType,
Integer publish){

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 116

d.veLop
4.1.21.6 hook_webpublish_exit_30

int hook_webpublish_exit_30(D3Interface d3, Document doc, User user, Integer errorCode, DocumentType
docType, Integer publish)

Aufrufzeitpunkt:

Vor bzw. nach dem Vero6ffentlichen eines Dokuments fir das Web.

Parameter Beschreibung

d3 die d.3-Schnittstelle

doc_id das Dokument, das ver6ffentlicht/zuriickgezogen wurde
user der ausfihrende Benutzer

errorCode 0= Aktion erfolgreich

Fehlercode sonst
docType Dokumentartkirzel

publish 1: Dokument wurde verdffentlicht
0: Veroffentlichung wurde zuriickgezogen

d.3 hook & server scripting api (groovy) 117

d.veLop

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1(2)
public class D3Hooks{

// (3)

@Entrypoint(entrypoint = "hook_webpublish_exit_30")

/] (4)

@Condition(doctype = ["XXXX"])

//(5)

public int doSomething(3Interface d3, Document doc, User user, Integer errorCode, DocumentType docType,
Integer publish {

/1(6)

d3.log.error("Hello world!");
/1 (7)
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

6. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

7. Die Funktion wird mit einem Return-Wert "0" beendet.

d.3 hook & server scripting api (groovy) 118

d.veLop

4.1.22 Workflow
4.1.22.1 hook_workflow_cancel_exit_20

int hook_workflow_cancel_exit_20(D3Interface d3, Document doc, String wflld, String stepld, User user)
Aufrufzeitpunkt:
Nachdem der Workflow Ffiir ein Dokument abgebrochen wurde.
Der Abbruch des Workflows kann hier nicht gestoppt werden.

Diese Hookfunktion wird nur aktiviert, wenn zuvor kein Fehler aufgetreten ist.

Parameter Beschreibung

doc das Dokument dessen Workflow-Durchlauf abgebrochen wurde
wflld die ID des Workflows

stepld ID des Workflow-Schrittes

user der ausfihrende d.3-Benutzer

// (1) Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;

/1)
public class D3Hooks{
//(3)
@Entrypoint(entrypoint = "hook_workflow_cancel_exit_20")
/] (@4
public int doSomething(3Interface d3, Document doc, String wflld, String stepld, User user {
/] (5

d3.log.error("Hello world!");
/] (6
return 0;
}// end of doSomething
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

d.3 hook & server scripting api (groovy) 119

d.veLop

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natlrlich mit einem "sprechenden” Namen vergeben werden.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

4.2 Validierungshooks
Validierungshook-Funktionen kénnen zur individuellen Eingabe-Validierung genutzt werden
(Plausibilitdtshooks).

= Die Annotation lautet: @Validation(entrypoint="<Bezeichner in Adminstration>")
= Rickgabewert: 0 bei Erfolg und <> 0 bei Fehler

int myValidationHook(D3Interface d3, String value, Document doc)

Parameter Beschreibung

d3 die d.3 Schnittstelle

value der zu priifende Eigenschaftswert

doc das Dokument, zu dem die Eigenschaft gehort

@Validation(entrypoint="ITValueValidation")
int validateValue(D3Interface d3, String value, Document doc)

{
if(value == "Peter" && doc.field["name"] == "Smith"){

return 0;

}
elsef
return-1;
}
}// end of validateValue

Validierung einer Bestellnummer auf ein giiltiges Format

d.3 hook & server scripting api (groovy) 120

d.veLop

Hinweis
Szenario:

Die Bestellnummer soll immer dem Format "Zwei Zahlen-Zwei Buchstaben-Finf Zahlen" (/[0-9]{2}-
[a-zA-Z]{2}-[0-9]{5}/) geniigen. Natdirlich kann man das direkt in d.3 admin konfigurieren, aber als
Beispiel um die Funktionsweise fiir die Validierung zu demonstrieren, ist es ebenfalls geeignet.

Zur Realisierung wird auf die Dokumenteigenschaft Bestellnummer eine Funktion zur Validierung
definiert.

d.3 hook & server scripting api (groovy) 121

d.veLop

//(1)
// Global d.3 libraries
import com.dvelop.d3.server.core.D3;

// Libraries to handle the diferent hook types
import com.dvelop.d3.server.Validation;

//(2)
public class D3Validate{

//(3)
@Validation(entrypoint = "checkOrderNumber")
//(4)
public int checkOrderNumber(D3 d3, def currentValue, Document doc){
//(5)
def tmpValue = currentValue;
def matchFlag = (tmpValue ==~ /[0-9]{2}-[a-zA-Z]{2}-[0-9]{5}/);
//(6)
return(matchFlag?0:-1);
}// end of checkOrderNumber
}// end of D3Validate

Das Ganze kann mit Groovy etwas kirzer realisiert werden.

//(1)

// Import the required d.3 classes
import com.dvelop.d3.server.core.D3;
import com.dvelop.d3.server.Validation;

//(2)
public class D3Validate {

//(3)
@Validation(entrypoint = "checkOrderNumber")
//(4)
public int checkOrderNumber(D3 d3, def currentValue) {
//(6)
return((currentValue ==~ /[0-9]{2}-[a-zA-Z]{2}-[0-9]{5}/) 2 0 :-1);
}// end of checkOrderNumber
}// end of D3Validate

Kommentare zu den einzelnen Blocken

1. Import der bendétigten Klassen.

2. Erstellen einer eigenen Klasse.

3. Um nun eine Groovy-Methode fir die Validierung einer Dokumenteigenschaft nutzen zu kénnen,
erfolgt Gber die Annotation @Validation eine Registrierung der Methode fiir eine in d.3 admin
konfigurierte, Validierungsfunktion.

4. Die Methode nimmt dann die oben beschriebenen Parameter in der vorgegebenen Reihenfolge
entgegen.

5. Innerhalb der Methode kann nun der ibergebene Wert (iberpriift werden, im Beispiel mittels eines
reguldren Ausdrucks.

6. Entspricht der Wert einem glltigen Wert, kann eine 0 ansonsten eine 1 zuriickgegeben werden.

d.3 hook & server scripting api (groovy) 122

4.3 Wertemengen-Hooks

d.veLop

Wertemengen-Hooks dienen zur Erzeugung dynamischer Wertemengen.

= Die Annotation lautet: @ValueSet(entrypoint="<Bezeichner in Administration>")

= Maximal kénnen mit einen Wertemengen-Hook 10.000 Werte zuriickgegeben werden.

= Sortierung: Die durch die Groovy-Hook-Funktion vorgegebene Reihenfolge der Werte wird

beibehalten.

def myValueSetHook(D3Interface d3, RepositoryField repoField, User user, DocumentType docType, Integer
rowNo, Integer validate, Document attribContext)

Parameter
d3

repoField

user
docType
rowNo
validate

attribContext

d.3 hook & server scripting api (groovy)

Beschreibung

die d.3-Schnittstelle

das Eigenschaftenfeld fiir das die Wertemenge definiert ist
per Methode provideValuesForValueSet() konnen die
gewiinschten Werte (ibergeben werden

der aufrufende Benutzer

Dokumentart, in der die Wertemenge enthalten ist
Zeilennummer fir Mehrfacheigenschaften

Aufruf zur Wertvalidierung (0/1)

Dokument-Objekt mit dem Attributkontext.

Dieses enthdlt bei der Suche: die Gibrigen Suchkriterien.
Beim Import und Update die Gibrigen bereits gefiillten Attribute.

123

d.veLop

@ValueSet(entrypoint="MyMonths")
def myMonthsList(D3Interface d3, RepositoryField repoField, User user, DocumentType docType, Integer
row_no, Integer validate, Document attribContext) {

List<String> names = ["01", "02", "03" /*, ...*/];

repoField.provideValuesForValueSet(names);

boolean translationGotOutdated = false;

if(translationGotOutdated){
d3.getArchive().removeTranslationFromCache("MyMonths", Locale. GERMAN);
d3.getArchive().removeTranslationFromCache("MyMonths", new Locale("de", "AT"));

}
}// end of myMonthsList

Einfache Wertmengen

Wir starten mit einer statischen einfachen Wertemenge welche iber das Skript zur Verfiigung gestellt
wird.

1 // (1) Global d.3 libraries
2 import com.dvelop.d3.server.core.D3Interface;
3 import com.dvelop.d3.server.Document;
4 import com.dvelop.d3.server.User;
5 import com.dvelop.d3.server.DocumentType;
6
7 // Libraries to handle the different hook types
8 import com.dvelop.d3.server.ValueSet;
9
10 // Special libraries
11 import com.dvelop.d3.server.RepositoryField;
12
13 1 //(Q2)
14 class SimpleValueSet{
15 /1 3)
16 @ValueSet(entrypoint = "customerNumbers")
17 /1 (4)
18 def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType
docType, int rowNo, int validate, Document doc){
19
20 // (5) Define static list of customer numbers
21 def customerList = ["4711","4712","4713","4714"];
22
23 // (6) Prepare List for interaction
24 if(customerList.size() > 0){
25 reposField.provideValuesForValueSet(customerList);
26 }
27 }// end of getCustomerNumber

28 }// end of SimpleValueSet

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.
2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

d.3 hook & server scripting api (groovy) 124

d.veLop

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.
4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen.

5. Ermittlung von Werten welche in der Wertmenge zur Verfiigung gestellt werden.

6. Bereitstellung der Werte als Auswabhlliste fFiir den User.

Statische Wertmengen interne Datenbank

Damit eine Wertemenge nicht an zwei Stellen gepflegt werden muss, kénnen die Daten aus dem

fihrenden System ermittelt und als Auswahlliste zur Verfliigung gestellt werden.

OVCoO~NATUVLT A WN =

10
11
12
13
14
15
16
17
18

19
20
21

22
23
24
25
26
27
28
29
30
31

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.ValueSet;

// Special libraries
import com.dvelop.d3.server.RepositoryField;

//(2)
class StaticValueSet{

/1 (3)

@ValueSet(entrypoint = "customerNumbers")

//(4)

def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType
docType, int rowNo, int validate, Document doc){

// (5) Prepare sql statmenet
def sqlQuery = "SELECT customerNo FROM CustomerData ORDER BY customerNo DESC"; //!!
ATTENTION

// (6) Execute sql statmenet
def resultRows = d3.sqgl.executeAndGet((String) sqlQuery);

// (7) Prepare list for user interface
if(resultRows.size() > 0){
reposField.provideValuesForValueSet(resultRows.collect{it.customerNo });
}
}// end of getCustomerNumber
}//end of StaticValueSet

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

d.3 hook & server scripting api (groovy) 125

d.veLop

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen.

5. Bereitstellung eines SQL-Statements zur Ermittlung der notwendigen Werte aus der Datenbank.

6. Ausfihrung des SQL-Statements gegen die d.3-Datenbanktabelle.

7. Bereitstellung der Werte als Auswabhlliste fiir den User.

Statische Wertmengen externe Datenbank

Damit eine Wertemenge nicht an zwei Stellen gepflegt werden muss, kénnen die Daten aus dem
fihrenden System ermittelt und als Auswahlliste zur Verfliigung gestellt werden.

d.3 hook & server scripting api (groovy) 126

VCoOo~NaauTh, WN =

19
20
21

22
23
24

25
26
27
28
29
30
31
32
33
34

d.veLop

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.ValueSet;

// Special libraries
import com.dvelop.d3.server.RepositoryField;

/1 (2)
class StaticValueSet{

/1 (3)

@ValueSet(entrypoint = "customerNumbers")

//(4)

def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType
docType, int rowNo, int validate, Document doc){

// (5) Prepare database Connection
def dbConnection = Sql.newlInstance("jdbc:sqlserver:<ServerName>\

\<InstanceName>:0;databaseName=<Databse>", "<User>", ,<Password>");

// (6) Prepare sql statmenet
def sqlQuery ="SELECT customerNo FROM CustoemrData ORDER BY customerNo DESC"; //!!
ATTENTION

// (7) Execute sql statmenet
def resultRows = dbConnection.rows((String) sqlQuery);

// (8) Prepare list for user interface
if(resultRows.size() > 0){
reposField.provideValuesForValueSet(resultRows.collect{ it.customerNo });
}
}// end of getCustomerNumber
}// end of StaticValueSet

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.
4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir

beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem

Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt Gbergeben. Der Funktionsname muss

nicht, wie im JPL dem Eintrittspunkt entsprechen.

d.3 hook & server scripting api (groovy) 127

d.veLop

5. Aufbau der JDBC-Verbindung zur externen Datenbank; der dazu gehorige JDBC-Treiber muss
entsprechend zur Verfiigung gestellt werden...

6. Bereitstellung eines SQL-Statements zur Ermittlung der notwendigen Werte aus der Datenbank.

7. Ausfihrung des SQL-Statements gegen die d.3-Datenbanktabelle.

8. Bereitstellung der Werte als Auswabhlliste fiir den User.

Dynamische Wertemengen

Damit eine Wertemenge nicht an zwei Stellen gepflegt werden muss, kénnen die Daten aus dem
fiihrenden System ermittelt und als Auswahlliste zur Verfligung gestellt werden. Dabei ist dann auch eine
dynamische Bericksichtigung von Suchkriterien moglich..

d.3 hook & server scripting api (groovy) 128

VCoOo~NaauTh, WN =

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53

d.veLop

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.ValueSet;

// Special libraries
import com.dvelop.d3.server.RepositoryField;

//
/1 (2)
public class DynamicValueSet{

/1 (3)

@ValueSet(entrypoint = "customerNumbers")

//(4)

def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType
docType, int rowNo, int validate, Document doc){

// (5) Get needed values from the document properties -------------------
def customerNo = doc.field[1];
def zipCode =doc.field[6];

//(6) If needed filter on the customer no
if(customerNo == null || (customerNo != null && customerNo.size() < 3)) {
reposField.provideValuesForValueSet("Please enter at least 3 characters!");

}

// (7) Prepare the sql-statement with the needed params ---------------
def sqlQuery = """SELECT customerNo + ' ' + name AS 'completeName'
FROM CustomerData WHERE 1=1""";

def sqlParams = [];
sqlQuery +=" AND customerNo LIKE ? OR name LIKE ?";

sqlParams.add(customerNo + "%"); // for the first questionmark after customerNo
sqlParams.add(customerNo + "%"); // for the second questionmark after Name

if(zipCode!= null && zipCode!=""){
sqlQuery +=" AND zipCode LIKE ?";
sqlParams.add(zipCode + "%");

}

// (8) Using external database
def dbConnection = Sql.newlInstance("jdbc:sqlserver:<ServeRName>\

\<InstanceName>:0;databaseName=<Database>", "<User>", ,<Password>");

// (9) Using external database
def resultRows = dbConnection.rows(sqlQuery, sqlParams);

//(10)

if(resultRows.size() > 0){

d.3 hook & server scripting api (groovy) 129

d.veLop

54 reposField.provideValuesForValueSet(resultRows.collect{ it.completeName });
55 }

56 }// end of getCustomerNumber

57 }// end of DynamicValueSet

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

Die unterschiedlichen Eintrittstypen benétigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt (ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen.

5. Definition der Filter-Variablen und die Ubergabe der erweiterten Eigenschaften.

6. Die Inhalte der erweiterten Eigenschaften werden kontrolliert und bei fehlenden oder zu wenig

9.
10.

bereitgestellten Inhalten wird die Generierung abgebrochen.
Zusammenstellung des SQL-Statement inkl. der dynamischen Zuordnung der bereitgestellten
Filterkriterien.

. Aufbau der JDBC-Verbindung zur externen Datenbank; der dazu gehorige JDBC-Treiber muss

entsprechend zur Verfligung gestellt werden.
Ausfiihrung des SQL-Statements gegen die d.3-Datenbanktabelle.
Bereitstellung der Werte als Auswahlliste fir den User.

Ubersetzung von dynamischen Hook-Wertemengen

Es ist moglich, dynamische Hook-Wertemengen zu ibersetzen.

Die Annotation lautet: @ValueSetTranslation(entrypoint="<Bezeichner in Administration>")

Der Entry-Point-Name entspricht dem Namen des zugehoérigen @ValueSet-Hooks.

Der Ubersetzungs-Hook muss immer alle Werte fiir das jeweilige Eigenschaftsfeld in der
angeforderte Sprache liefern, nicht nur die Werte, die fiir den aktuell aktiven Benutzer oder
Kontext relevant sind.

Die Ubersetzungen werden vom d.3-Server gecacht. Die Dauer, fiir die diese Werte gecacht bleiben,
ist implementationsabhdngig und kann sich mit zukinftigen Versionen andern.

Mit der Funktion d3.getArchive().removeTranslationFromCache() kann ein Neuladen der
Ubersetzungen zu jeder Zeit erzwungen werden. Diese Funktion kann von beliebiger Stelle aus
aufgerufen werden, nicht nur aus dem Wertemengen-Hook.

Hinweis: diese Schnittstelle ist schon Fir die Unterstiitzung von regionalen Dialekten vorbereitet.
Bitte beachten Sie aber, dass d.3 zum gegenwadrtigen Zeitpunkt noch keine vollstdndige
Unterstitzung fir dieses Feature bietet.

d.3 hook & server scripting api (groovy) 130

d.veLop

+ Andie Volltext-Engine (d.search) wird nur der Speicher-Wert {(ibergeben, nicht die Ubersetzungen.
Eine Volltextsuche nach den Ubersetzungen ist somit nicht méglich.

def myValueSetTranslation(D3Interface d3, Translation transl)

Parameter Beschreibung
d3 die d.3-Schnittstelle
transl das Ubersetzungs-Objekt.

Die angeforderte Zielsprache und der zugehérige Entry-Point sind in
diesem Objekt vorgegeben und diirfen nicht gedndert werden.

Uber die set-Methode kénnen Werte eingetragen werden.

@ValueSetTranslation(entrypoint="MyMonths")
def myMonthsTranslation(D3Interface d3, Translation transl) {
def lang = transl.locale.language

if (lang == "de") {

if (transl.locale.country == "AT")
transl.set("01", "Janner");
else

transl.set("01", "Januar");
transl.set("02", "Februar");
transl.set("03", "Marz");
// ...

} else if (lang == "th") {
transl.set("01", "unsiAu™);
transl.set("02", "auAwus");
transl.set("03", "GurAu");

// ...

}else {
transl.set("01", "January");
transl.set("02", "February");
transl.set("03", "March");

// ...

}

}

4.4 Dokumentklassen-Hooks

Dokumentklassen-Hooks kdnnen zur Bestimmung dynamischer Berechtigungen genutzt werden, die nicht
mit d.3 Dokumentklassen und Restriktionsmengen abgebildet werden kénnen.

= In der Administration anzugeben per: @>3H0O0K ("Bezeichner fiir den Hook")

= Die Annotation lautet: @DocumentClass(entrypoint="<der per @>3HOOK angegebene Bezeichner>")

int myDocumentClassHook(D3Interface d3, String value, DocumentType docType, String userld, Document doc)

d.3 hook & server scripting api (groovy) 131

Parameter
d3

value

docType
userld

doc

Riickgabewert:
1: Berechtigt
0: kein Zugriff

d.3 hook & server scripting api (groovy)

d.veLop

Beschreibung
die d.3-Schnittstelle

Wert der Dokumenteigenschaft, fiir das die Hook-Funktion
aufgerufen wurde

die Dokumentart des zu priifenden Dokuments
d.3-Benutzer-ID des ausfiihrenden Benutzers

das zu priifende Dokument

132

d.veLop

// (1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Condition;

// Libraries to handle the different hook types
import com.dvelop.d3.server.DocumentClass;
/1(2)
public class D3DocumentClassHook{
/1 (3)
@DocumentClass(entrypoint="myDocumentClassHook")
/1 (4)
@Condition(doctype = ["XXXX"])
/1 (5)
def myDocumentClassHook(D3Interface d3, String value, DocumentType docType, String userld, Document
doc){
if (value > 10000 && docType.id == "DINV"){
if (value <= 20000 && doc.owner == "Meyer"){
return 1;
}
else if (value > 20000 && doc.owner == "Chef"){
return 1;
}
else {
return 0;
}
}

else
return 1;
}
}// end of myDocumentClassHook
}// end of D3DocumentClassHook

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Optional kénnen die Funktionen mit einer weiteren Annotation Condition auf bestimmte
Dokumentklassen gemapt werden.

5. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen.

d.3 hook & server scripting api (groovy) 133

d.veLop

Hinweis

Dokumentklassen-Hooks werden bei einer Suche fir jedes einzelne Dokument in der Treffermenge
aufgerufen!

Das kann zu Performance-Problemen bei der Rechtepriifung fiihren und somit die Dokumenten-
Suche verlangsamen, insbesondere dann, wenn im Dokumentklassen-Hook SQL-Kommandos
abgesetzt werden.

Noch groflRere Auswirkungen auf die Performance bestehen, wenn Dokumentklassen-Hooks fiir
Mehrfacheigenschaftsfelder (60er Felder) eingesetzt werden, da diese dann zusatzlich jede mit
einem Wert belegte Zeile jeder Mehrfacheigenschaft aufgerufen werden.

Wichtig

Dokumentklassen-Hooks werden bei der Dokumenten-Suche parallel in mehreren Threads
ausgefihrt. Diese Hook-Funktionen dirfen daher nur threadsicheren Code enthalten und aufrufen.

4.5 Groovy-Schnittstelle in d.3 admin
d.3 admin

Unter d.3 admin > d.3 config gibt es die Bereiche Hook-Funktionen und Java/Groovy, welche beide im
Kontext einer Groovy-Nutzung konfiguriert werden missen.

Hook-Funktionen

In d.3 admin missen im Bereich Systemeinstellungen > d.3 config folgende Konfigurationen
vorgenommen werden:

* Groovy-Hooks aktivieren
Geben sie die Verzeichnisse, in denen die per Groovy implementierten, kundenspezifischen
Programmanpassungen enthalten sind, hier an.

» Neuladen von Groovy-Hooks (NUR WAHREND DER ENTWICKLUNG UND NUR AUF DEM TEST-
SYSTEM)
Ist dieser Schalter aktiviert, so fiihrt das Speichern von Anderungen in Groovy Hook-Dateien dazu,
das diese direkt neu geladen werden. Dadurch muss kein d.3-Prozess neu gestartet werden und die
Code-Anderungen sind sofort aktiv. Dieser Schalter kann bei der Entwicklung von Hook-Funktionen
hilfreich sein. In Produktivumgebungen sollte er jedoch ausgeschaltet bleiben.

Java/Groovy

In d.3 admin missen im Bereich Systemeinstellungen > d.3 config folgende Konfigurationen
vorgenommen werden:

- Java/Groovy Support
Einschalten der Unterstitzung fir die Ausfiihrung von Java und Groovy Code in d.3.

d.3 hook & server scripting api (groovy) 134

d.veLop

e Java CLASSPATH
Dateipfad bzw. Dateipfade Semikolon-getrennt zu den eigenen Java Klassen. Hier kann ein
Verzeichnis/kdnnen Verzeichnisse angegeben werden, in dem/denen die .class-Dateien abgelegt
sind oder auch der Dateiname einer JAR-Datei. Hier ware auch die Option eine Classpath-Datei zu
nutzen.

« Java/Groovy API Funktionen
Aktiviert die Plugln Schnittstelle fir APl Funktionen entwickelt in Java bzw. Groovy. Groovy-Skripte
oder JAR-Dateien, die d.3-API-Funktionen implementieren, werden aus diesem Verzeichnis geladen.
Nicht empfohlen.

+ Java Remote Debugging
Java Virtual Maschine im Debugmodus starten. Dadurch ist es mdglich sich per Remote Java
Debugger mit einem d.3-Server-Prozess zu verbinden, um die darin ausgefiihrten Groovy Hooks zu
debuggen. Fiir die Kommunikation wird Port 43400 benutzt. Da jeder d.3-Prozess eine eigene Java
Virtual Machine (JVM) startet, werden die benutzten Ports hochgezahlt. Der erste mit aktiviertem
JAVA_REMOTE_DEBUGGING gestartete Prozess 6ffnet Port 43400, der Zweite Port 43401 usw. Der
ermittelte Port wird beim Start der JVM per Meldung Java Remote Debugging Port in das d.3-Log
ausgegeben.
Hinweis: Die JVM wird von d.3 On-Demand beim ersten Zugriff auf Groovy-Code gestartet und
steht damit i.d.R. noch nicht direkt nach Start des Prozesses zur Verfiigung.

4.6 Programmierung von Hook-Funktionen
Benotigte Java-Bibliotheken

Im Groovy-Kontext werden Bibliotheken benétigt, welche iber die Integration der Datei
groovyhook.jar zur Verfligung stehen und nur noch in den Groovy-Dateien referenziert werden missen.

Globale Bibliotheken

Zur Nutzung des d.3-Interface-Objektes wird eigentlich nur die Bibliothek
com.dvelop.d3.server.core.D3Interface bendtigt.

Hinweis

Da es aktuell bei der Nutzung der JavaDoc-Dokumentation und damit der Groovy-Templates mit
der Implementierung von "d3Interface" noch technische Herausforderungen gibt, kann zur
Programmierung auch die Basis-Bibliothek import com.dvelop.d3.server.core.D3 genutzt werden.
Hier sollte aber auf jeden Fall fir die produktive Nutzung wieder auf das D3Interface gewechselt
werden.

Spezielle Bibliotheken Fiir die einzelnen Hook-Typen

d.3 hook & server scripting api (groovy) 135

Annotation Einsatz

@Entrypoint d.3 Eintrittspunkte

@ValueSet Wertemengen-Hooks

@Validation Validierungs-Hooks

@DocumentClas Dokumentklassen-
s Hooks

Filter auf bestimmte
Dokumentklassen

@Condition

order-Option

Syntax

@Entrypoint(entrypoint="
name_in_admin", order* =

n)

@ValueSet(entrypoint="n
ame_in_admin", order* =

n)

@Validation(entrypoint="
name_in_admin", order* =

n)

@DocumentClass(entrypoi
nt="name_in_admin",
order* =n)

@Condition(doctype =
["DRECH", "DBEST",
"DLIEF"])

d.veLop

Benotigte Java-
Bibliothek

import
com.dvelop.d3.server.Ent
rypoint;

import
com.dvelop.d3.server.Val
ueSet;

import
com.dvelop.d3.server.Re
positoryField;

import
com.dvelop.d3.server.Vali
dation;

import
com.dvelop.d3.server.Do
cumentClass;

import
com.dvelop.d3.server.Co
ndition;

* Der optionale Parameter order kann zur Definition einer Reihenfolge der Abarbeitung definiert

werden, wenn auf einem Eintrittspunkt mehrere Groovy-Funktionen definiert sind.

Styleguide-Empfehlung

Zur Bereitstellung der Funktionalitdt muss mind. eine Klasse vom Typ public angelegt werden; wobei

public im Kontext Groovy auch weggelassen werden kann. Hier konnte man fiir die einzelnen Typen von

Hook-Funktionen jeweils eine eigene Klasse, vielleicht sogar eine eigene Datei, bereitstellen. Die

einzelnen Klassennamen kénnten wie folgt aussehen:

Klassenname

D3Hooks

D3DataSets

D3Validate

Beschreibung

Eigenschaftenebene

D3DocClasses

d.3 hook & server scripting api (groovy)

Fir die Behandlung von Eintrittspunkten

Fir die Implementierung von Wertemengen

Zur Bereitstellung von Validierungs-Funktionen auf

Zur Realisierung von spezifischen Dokumentklassen

136

d.veLop

Klassenname Beschreibung

D3FolderScheme Falls erweiterte Aktenpldne benétigt werden kdnnte diese
Klasse bereitgestellt werden.

Natirlich konnte es auch sinnvoll sein, abhdngig von Projekten oder Loésungen unterschiedliche Dateien,
Klassen und Funktionen bereitzustellen. Hier ist die Namenskonvention nur ein Vorschlag.

Registrieren einer Groovy-Methode als Hook-Funktion
Fir die Registrierung der verschiedenen Hook-Typen stehen die folgenden Annotationen zur Verfiigung:

Die Registrierung besteht darin, dass die Annotation im Quellcode direkt der Java/Groovy-Methode
vorangestellt wird, die fiir den per entrypoint angegebenen Hook-Eintrittspunkt aufgerufen werden soll.

import com.dvelop.d3.server.Entrypoint;

public class MyHooks{
@Entrypoint(entrypoint="hook_insert_entry 10", order=1)
@Condition(doctype= ["DRECH", "DBEST", "DLIEF"])
int checklncommingDocs(D3Interface d3, User user, DocumentType docType, Document doc){
println "The function checkincommingDocs was called inside the hook function entry Point
hook_insert_entry_10";
return O;
}// end of checkincommingDocs
}// end of MyHooks

Hinweis

Eine Groovy-Klasse die von d.3 geladen und registriert werden soll, muss einen 6ffentlichen
Konstruktor ohne Parameter (public no-argument constructor) bereitstellen. Das ist auch erfullt,
wenn der Konstruktor weggelassen wird, weil dann der Java Default-Konstruktor implizit existiert.

Riickgabewert von Hook-Methoden

Als Rickgabewert wird eine Zahl (Integer) erwartet. Dieser zuriickgegebene Wert wird vom Server als
Fehlercode ausgewertet.

Wert =0 ==> Erfolg!

Wert <> 0 ==> Fehler in Hook-Funktion. Je nach Hook-Funktion fihrt dies zum Abbruch der Aktion in deren
Kontext die Hook-Funktion ausgefiihrt wurde.

d.3 hook & server scripting api (groovy) 137

d.veLop

Hinweis

Bei Groovy ist das Schlisselwort return” fiir das Verlassen einer Methode mit Riickgabewert
optional, kann also weggelassen werden.

Wenn es nicht angegeben ist, dann nimmt Groovy kurzer Hand den letzten Variablenwert, der vor
der schlieBenden Klammer benutzt wurde und gibt diesen implizit als Returnwert zuriick.

Dies kann zu Fehlern oder ungewollten Rickgabewerten fihren. Deshalb sollte eine Hook-
Methode explizt mit return beendet werden. Wenn der Riickgabewert nicht relevant ist, dann mit
return 0.

Groovy Hook-Funktionen fiir die d.3-Eintrittspunkte werden automatisch konFiguriert.

+ Die Bezeichner fiir d.3-Eintrittspunke missen nicht mehr unter d.3 admin > d.3 config
>Hook-Funktionen > Hook-Funktionen ausfiihren einzeln eingetragen werden.

« Wird beim Laden einer Groovy-Klasse eine Annotation fir einen Eintrittspunkt gefunden, so
wird die annotierte Methode dafiir registriert.

* Im Config-Modul ist hinter dem Eintrittspunkt dann <groovy hook> als Kennzeichnung fir
die Registrierung eingetragen.

» Es konnen auch mehrere Methoden pro Eintrittspunkt registriert werden.

Wichtig

Da die Aktualisierung von d.3 admin manchmal etwas dauern kann, kann auch die Ausgabe im Log-
File genutzt werden, dort wird das erfolgreiche Laden der Groovy-Funktionen zu den
Eintrittspunkten ebenfalls dokumentiert.

Register method <sendinvoice: for ENTRY_POINT hook <hook_insert_exit_20:
1)30.0115:21:34,934 D3ISRV_P 6014286C Register method <justDummy= for ENTRY_POINT hook <hook_validate_import_entry_ 10

|__i;| 30,01 15:21:34,534 DISRV_P 6014286C Register method <updateAttibuteEntry_ 205 for ENTRY_PQINT hook. <hook_upd_attrib_entry_20=

|__i:| 3001 15:21:34.534 D3ASRV_P 60142860 Reaqister method <getCustomerDataForinvoice: for ENTRY_POINT hook <hook_insert_entry_10:

|-_1:| 3001 15:21:34574 D3ISRV_P 53684354 Register method <updateAttibuteEntry_20: for ENTRY_POINT hook <hook_upd_attrib_entry_20=

|__i:J 3001 15:21:34575 D3ISRV_P 53684354 Register method <sendinvoice s for ENTRY_POINT hook <hook_insert_exit_20

|__i;| 3001 15:21:34,575 D3ISRV_P 53684354 Register method <justDummy= for ENTRY_POINT hook <hook_validate_import_entry_ 10

|__i;| 30,01 15:21:34,575 DISRV_P 53684354 Register method <getCustomerDataForinvoice: for ENTRY_POINT hook <hook_insert_entry_10:

|__i;| 30,01 15:21:34,588 D3ISRV_P 25436074 Register method <updateAttributeEntry_ 20 for ENTRY_POQINT hook <hook_upd_attrib_entry_20>

|-_i:| 3001 1521:34 588 D3ISRV_P 25486074 Register method <just Dummy: for ENTRY_POINT hook <hook_validate_import_entry_10:

|-_i:J 3001 15:21:34 588 D3ISRV_P 25486074 Register method <sendinvoice s for ENTRY_POINT hook <hook_insert_exit_20

|__i;| 30.01 15:21:34,588 D3ISRV_P 25486074 Register method <getCustomerDataForinvoice for ENTRY_POINT hook <hook_insert_entry_10:

|__i;| 3001 15:21:34,594 D3ASY_P 45C08030 D3P: Register method <updateAttibute Entry_ 20 for ENTRY_POINT hook <hook_upd_attib_entry_20:=
|__i;| 30.01 15:21:34,595 D3ASY_P 45C08030 D3F: Register method <justDummy> for ENTRY_POINT hook <hook_validate_import_entry_ 10

|-_i:| 3001 15:21:34.5585 D3ASY_P 45C08030 D3F: Register method <sendinvoice:= for ENTRY_POINT hook <hook_insert_exdt_ 20

|-_1:| 3001 15:21:34555 D3IASY_P A5C08030 D3P: Register method <gatCustomerDataForinvoice: for ENTRY_POINT hook <hook_insert_sntry_10>
|__i;| 30.01 15:21:35005 D3ISRV_P G7C46384 Register method <updateAtributeEntry_ 205 for ENTRY_POINT hook «<hook_upd_attrb_entry_20=

|__i;| 30.01 15:21:35,005 D3ISRV_P 67C46384 Register method <justDummy= for ENTRY_POINT hook <hook_validate_import_entry_ 10

|__i;| 30.01 15:21:35,005 DISRV_P 67C46384 Register method <sendinvoice: for ENTRY_PQINT hook <hook_inser_exat_ 20

|__i;| 30.01 15:21:35,005 D3ISRV_P 67C46384 Register method <getCustomerDataForinvoice: for ENTRY_POINT hook <hook_insert_entry_10:

[}

Verwenden von Java-Bibliotheken

d.3 hook & server scripting api (groovy) 138

d.veLop

Sollte es bei der Umsetzung einer Hook-Funktion notwendig werden, von Drittanbietern oder selbst
erstellte Java-Bibliotheken zu verwenden (zum Beispiel um ihr CRM-System anzusprechen), kénnen Sie
diese Bibliotheken fiir jeden Hook spezifisch angeben.

Legen sie dazu neben ihrer vorhandene <Hookname>.groovy eine weitere Datei <Hookname>.classpath
an. In dieser Datei kdnnen zeilenweise Eintrage fir den Java-Classpath definiert werden. Es kénnen
absoluter Pfade, sowie Pfade relativ zum aktuellen Verzeichnis verwendet werden, die auf JAR-Dateien
zeigen.

Auf diese Weise sind die Java-Bibliotheken voneinander isoliert, sodass Sie in mehreren Hooks
unterschiedliche Versionen von Bibliotheken verwenden kénnen.

Hinweis

JDBC-Treiber konnen nicht hookspezifisch eingehdngt werden, sondern miissen global geladen
werden. Details dazu unter Access to other databases.

Isolation von Hook-Klassen

Jede Hook-Klasse wird von einer eigenen Groovy-Classloader-Instanz geladen. Dadurch kann ein Hook-
Objekt nicht auf die Eigenschaften anderer Hook-Objekte zugreifen.

Allerdings kann jede Groovy-Klasse per "import" Kommando in einer anderen sichtbar gemacht werden.
Die Klasse kann dann instanziiert werden oder, im Fall von statischen Elementen, konnen diese direkt
aufgerufen werden.

Gibt es mehrere, thematisch zusammengehorige Hook-Klassen, so sollte gemeinsam genutzter Code in
eine eigene Klasse und damit ein eigenes Modul ausgelagert werden.

Soll mittels Hook beim Import validiert werden, ob die Kundendaten so wie eingegeben auch im CRM-
System hinterlegt wurden, und gleichzeitig eine Wertemenge maoglicher Kunden angeboten werden, dann
findet man hier typischerweise gemeinsam genutzten Code. Dieser sollte in einer eigenen Groovy-Klasse
implementiert werden, die wiederrum von den anderen Groovy-Hook-Klassen genutzt werden kann.

Package-Struktur

Genau wie Java-Klassen werden auch Groovy-Klassen in Packages organisiert. Der Name des Packages
muss am Anfang der Quelldatei vor den Import-Anweisungen und der ersten Klassendefinition genannt
sein. Dabei konnen Sie die gewohnte Form der Strukturierung anhand von Domain-Namen in umgekehrter
Reihenfolge verwenden. Wird kein "package" angegeben wird das "Default"-Package vorgegeben.

Package-Struktur: Aktuell leider nicht nutzbar!

In der aktuellen Version kénnen leider keine Packages genutzt werden!

Anbei ein paar Empfehlungen fiir Package-Namen:

com.dvelop.scripts

d.3 hook & server scripting api (groovy) 139

d.veLop

Groovy-Skripte welche im Kontext eines Server-Interfaces bzw. des Prozessmanagers aufgerufen und
damit im Verzeichnis "ext_groovy" abgelegt werden. Die resultierende Verzeichnisstruktur ware dann
"ext_groovy\com\dvelop\scripts".

com.dvelop.hooks

Die Groovy-Hook-Funktionen, welche die einzelnen Hook-Eintrittspunkte bedienen, sollten hier ebenfalls
in einem eigenen Package definiert werden. Das resultierende Verzeichnis ware dann zum Beispiel
"d3server.prg\D3T\groovyHooks\com\dvelop\hooks".

com.dvelop.api

Werden mittels Groovy-Funktionen eigene API-Funktionen bereitgestellt, konnte dieses Package genutzt
werden. Eine resultierende Verzeichnisstruktur konnte dann wie folgt aussehen
"d3server.prg\D3T\groovyAPI\com\dvelop\api".

4.7 d.3-dynamische Riickmeldungen aus den Hook-Funktionen

Sollten aus einer Serveraktion dynamische Texte auch an die Clientseite ibergebenen werden, zum
Beispiel fiir dynamischer Fehlermeldungen, kann die Hook-Eigenschaft "additional_info_text" aus jedem
Hook gesetzt werden.

d3.hook.setProperty("additional_info_text", "My message text for the Client!")

Wird der Hook von einem d.3 server-Prozess (nicht hostimp oder async) aufgerufen, wird dieser Text als
zusatzlicher Exportparameter bei dem aktuellen API-Call an an den Client Gbergeben.

Hinweis

Dieser Text wird dem Benutzer nicht durchgangig bei allen Clients angezeigt.

4.8 Nummernkreis fir Returnwerte

Die Returnwerte aus den Hook-Funktionen werden intern mit einem Offset-Wert verrechnet.

Der Wert, welcher auf der Client-Seite ausgewertet werden kann, ist dabei das Ergebnis aus der
Berechnung "Offset-Wert — Bereichswert "!

Eintrittspunkt Bereich Offs Ergebnis* Beispiel (Offset - Eigener-
et Wert)
ImportDocument -8000-> -9999 1000 18000->19999 10000 - (-8000) = 18000
0
ImportNewVersionDocu -8000 -> 2000 28000->29999 20000 - (-8500) = 28500
ment -9999 0

d.3 hook & server scripting api (groovy) 140

d.veLop

DeleteDocument -1900->-1999 4000 5900 ->5999 4000 - (-1925) = 5925

[Alle anderen] -1->-499 9500 9501 ->9999 9500 - (-250) =9750

* Offset-Wert — Bereichswert = Ergebnis

4.9 Nutzung des Transportsystems fir Groovy-Funktionen

Mit dem Transportsystem kénnen Einstellungen zwischen d.3-Repositorys ibertragen werden. Auch
Groovy-Hook-Module kdnnen damit transportiert werden.

Hierzu werden im Bearbeitungsmodus von d.3 admin Projekte definiert, die alle zu transportierenden
Einstellungen klammern.

Um ein Hook-Modul einem Tranportprojekt zuzuordnen, wird der Projektename per Annotation
@TransportProject in das Groovy-Hook-Modul eingetragen.

Die Annotation @TransportProject ist auf Klassenebene definiert und muss deshalb einer Java/Groovy
Klassendefinition vorangestellt werden.

Als Parameter der Annotation kénnen ein oder mehrere Projektnamen oder auch die GUID's der Projekte
angegeben werden.

import com.dvelop.d3.server.TransportProject;

// OPTION 1: Project name
@TransportProject("myProject")
public class MyTestHooks {

}// end of MyTestHooks

// OPTION 2: Project-GUID
@TransportProject("6ACDA408-3638-4B70-8E0D-036CC9559F7E")
public class MyTestHooks {

}// end of MyTestHooks

// OPTION 3: or a combination of Project name and prodjct GUID
@TransportProject(["New installation", "931608C4-E075-4E89-AA35-66E6FD74770B"])
public class MyTestHooks {

// ...
}// end of MyTestHooks

Folgende Regeln sind zu beachten, um Groovy-Hook-Module transportieren zu konnen:

» Der Dateiname der Module darf sich nicht mehr andern, sobald erstmals ein Meilenstein
geschlossen wurde, der zu einem der annotierten Projekte gehort

e Pro Modul sollte nur eine Klasse verwendet werden.

» Die Module werden in jeden Meilenstein der annotierten Projekte aufgenommen.

d.3 hook & server scripting api (groovy) 141

d.veLop

« Beim Import eines Meilensteines wird jedes Modul ausgetauscht, also iberschrieben.

« Beim Import wird in den per Parameter HOOK_GROOVY_DIRS_CUSTOMER eingestellten
Verzeichnissen nach dem Dateinamen der Module gesucht. Wird die Datei gefunden, wird diese
Uberschrieben.

« Wenn keine Datei mit dem Namen gefunden wurde, wird die Datei in das erste Verzeichnis aus
HOOK_GROOVY_DIRS_CUSTOMER kopiert.

* Wenn kein Verzeichnis iber HOOK_GROOVY_DIRS_CUSTOMER konfiguriert ist, wird in dem d.3-
Konfigurationsverzeichnis (Speicherort der d3config.ini) ein Unterordner groovy_hooks erstellt
und die Datei dort abgelegt.

» Wird die Modul-Datei erstmalig im Ziel-Repository abgelegt, miissen die d.3-Prozesse neu gestartet
werden.

« Wird die Modul-Datei ausgetauscht, existiert vorher also schon, hdngt es vom Parameter
HOOK_GROOVY_RELOAD_ON_CHANGE ab, ob das Modul direkt aktiviert wird.

« Wenn ein Groovy-Modul im Zielsystem geléscht werden soll, muss die Annotation des Moduls im
Quellsystem entfernt werden und die Datei im Zielsystem geléscht werden.

d.3 hook & server scripting api (groovy) 142

d.veLop

5 Groovy API-Funktionen

d.3 server verfiigt ab Version 8 tiber eine Plugin-Schnittstelle fiir API-Funktionen.
Damit kénnen eigene, in Java/Groovy entwickelte API-Funktionen registriert werden.

Diese konnen dann genauso wie jede andere d.3-API-Funktion iber das d.3-Kommunikations-Protokoll
d3fc aufgerufen werden.

Wichtig

Groovy API-Funktionen stehen (iber die d.3 web webservice-API-Schnittstelle nicht zur Verfligung
Sie kdnnen von d.ecs forms Uber das dortige Skripting genutzt werden, sowie fir d.velop-eigene
Projekte.

Aktivieren der Plugin-Schnittstelle

1. Offnen Sie d.3 admin > Systemeinstellungen > d.3 config.
2. Geben Sie darin im Abschnitt Java/Groovy fiir den Eintrag Java/Groovy API Funktionen ein
Verzeichnis an.

Groovy-Skripte, die d.3-API-Funktionen implementieren, werden dann in diesem Verzeichnis gesucht und
daraus geladen.
Dadurch wird die Plugln-Schnittstelle fiir API-Funktionen aktiviert.

Damit eine Java-Klasse als d.3 API-Funktion geladen und registriert wird, muss diese von der
Klasse D3ApiCall abgeleitet sein und eine Methode public int execute(D3Interface d3) implementieren.

Dariber steht dann das D3Interface zur Verfligung.

d.3 hook & server scripting api (groovy) 143

d.veLop

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.D3ApiCall;
import com.dvelop.d3.server.User;

public class GetMyDBData extends D3ApiCall

{
public int execute(D3Interface d3)

{

def import_param = d3.remote.getimportParams()

def id_value =import_param.get("id")

def resultset = d3.sql.executeAndGet("SELECT column1, column2 FROM mytable WHERE id like ?",
[id_value])

d3.remote.setExportTable(resultset)
d3.remote.setExportParams(["'number" : resultset.size()])

return 0

}
}

5.1 Groovy-APIl und Nutzung in JPL

Mit der Integration von Groovy als Server-Skriptsprache steht nun auch die Méglichkeit zur Verfiigung
eigene API-Funktionen zu erstellen und zu nutzen.

Ein erstes Beispiel mit einen Aufruf aus JPL wird im Anschluss vorgestellt.

Hinweis
Szenario:

Beispielhaft wird hier eine Funktion dargestellt, die mittels SQL Werte aus einer Tabelle in der d.3-
Datenbank liest und diese zurtickliefert.

Groovy-Beispiel SQL-Abfrage als Serverfunktion

d.3 hook & server scripting api (groovy) 144

VCoOo~NaauTh, WN =

20
21
22
23

d.veLop

package com.dvelop.api;

/(1)

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.D3ApiCall;
import com.dvelop.d3.server.User;

/1 (2)
public class GetMyCustomerData extends D3ApiCall
{
/1 (3)
public int execute(D3Interface d3){
def importParams = d3.remote.getimportParams();
def idvalue =importParams.get("id");
def resultSet = d3.sql.executeAndGet("""SELECT name, customerNo, zipCode, city, street
FROM CustomerData
WHERE customerNo =?""", [idValue]);
//(4)
d3.remote.setExportTable(resultset);
//(5)
d3.remote.setExportParams(["number" : resultSet.size()]);
return 0;

}
}// end of GetMyCustomerData

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch

weggelassen werden kann. Hier ist aber wichtig dass die Erweiterung

extendsD3ApiCall hinzugefiigt wird.

3. Die Funktion, welche nun als API-Call bereitgestellt werden soll, wird nun definiert. Dabei kdnnen

Uber den Befehl getimportParams auch Parameter, welche Gber den Aufruf der Funktion

bereitgestellt werden, ausgelesen werden.

4. Mittels der Funktion setExportTable stehen dann auch die Ergebnisse aus der Funktion dem

Aufrufenden Programm zur Verfligung.

Ein d3FC-Aufruf mittels JPL implementiert

d.3 hook & server scripting api (groovy) 145

d.veLop

1 /(1)
2 vars |[ReturnValue
3
4 1 /1@
5 call api_function("d3fc_user_set", "dvelop")
6 call api_function("d3fc_password_set", "dvelop")
7 call api_function("d3fc_remote_server_set", "127.0.0.1")
8 call api_function("d3fc_port_set", "3400")
9 call api_function("d3fc_timeout_set", "60")
10 call api_function("d3fc_server_set", "B")
11
12 1 //3)

13 // ACHTUNG ERST FUNKTION DANN PARAMETER
14 call api_function("d3fc_function_name_set", "GetMyCustomerData")

15 call api_function("d3fc_importing_set”, "id", "<CustomerNo>")

16 call api_function("d3fc_exporting_set", "number")

17 call api_function("d3fc_table_set_headline", "name customerNo zipCode city street.","O")
18

19 | /4

20 [ReturnValue = api_function("d3fc_execute")

21

22 /15

23 call api_function("d3fc_exporting_get" ,"number")
24 vars [TableRowCount = api_single_info

27 | /()
28 call api_log_error("SIZE :ITableRowCount ")
29 call api_log_error(" :[ReturnValue ")

32 /(D)
33 vars [Ret, IName, IKdnr
34 [Ret = api_function("d3fc_first")

35

36 //(®)

37 while((Ret !=EQT)
38 | {

39 call api_function("d3fc_field_get","name")
40 IName = api_single_info

42 call api_function("d3fc_field_get","customerNo")
43 IKdnr = api_single_info

45 call api_log_error(":IName :IKdnr")
46 Ret = api_function("d3fc_next")
47 }

Kommentare zu den einzelnen Blocken

1. Zur Aufnahme des Rickgabewertes wird eine lokale Variable angelegt.

2. Im ndchsten Schritt missen die Login-Parameter fir den d3FC-Aufruf vorgegebenen werden.

3. Um nun die Funktion gemaR der eigenen Definition aufrufen zu kénnen, muss der Funktionsname
festgelegt und die Parameter ibergeben werden.

d.3 hook & server scripting api (groovy) 146

d.veLop

4. Sind alle notwendigen Einstellungen vorgenommen kann der eigene API-Befehl nun mittels
"d3fc_execute" ausgefiihrt werden!

5. Die bereitgestellten Riickgabewerte kénnen nun ausgelesen und in lokale Variablen Gibernommen
werden.

6. Zur Dokumentation der Funktion bzw. der Ergebnisse werden diese hier als Error-Message im Log-
File ausgegeben.

7. Im nachsten Schritt werden nun die einzelnen Kundendaten ausgelesen und ebenfalls im Log-File
ausgegeben.

d.3 hook & server scripting api (groovy) 147

d.veLop

d.3 hook & server scripting api (groovy) 148

d.veLop

6 Groovy-Skripte

Uber d.3 server interface kénnen neben den externen JPL-Skripten nun auch Groovy-Skripte ausgefiihrt
werden.

In einer Groovy-Skriptdatei steht die d.3-Schnittstelle als Field-Variable d3 zur Verfligung und kann direkt
genutzt werden.

d3.log.info("Groovy-Script started!")

Um in einer Entwicklungsumgebung den Typ des vordefinierten Fields d3 bekannt zu geben, damit
Typpriifungen, Kommandovervollstdndigung etc. funktionieren kénnen, sollten die folgenden beiden
Zeilen am Anfang eines Skripts eingefiigt werden.

import com.dvelop.d3.server.core.D3Interface
D3Interface d3 = getProperty("d3")

d3.log.info("Groovy-Script started !")

Verwenden von Groovy-Klassen und Java-Bibliotheken in Skripten

Das Groovy-Skript Verzeichnis "ext_groovy" sowie die definierten Groovy-Hook-Verzeichnisse werden bei
der Ausfiihrung eines Skripts dem CLASSPATH hinzugefiigt, sodass Klassen aus anderen Groovy-Skripten
im auszufihrenden Skript genutzt werden kénnen. Aulierdem werden auch fiir Skripte Classpath-Dateien
(Dateiname: "<skriptname>.classpath") unterstitzt. Auch die darin enthaltenden Pfade (zB. absoluter Pfad
einer JAR-Datei) werden dem Classpath hinzugefiigt, um diese Resourcen in dem Skript nutzen zu kénnen.

Beispiel: In einem Skript ../ext_groovy/myScript.groovy soll die JavaMail API (javax.mail.jar) benutzt
werden. Dazu wird der absolute Pfad der JAR-Datei in eine gleichnamige Classpath-Datei ../ext_groovy/
myScript.classpath eingetragen:

Beispielhafter Dateinhalt: D:\downloads\java\ext_jars\javax.mail-1.5.6.jar

d.3 hook & server scripting api (groovy) 149

d.veLop

Skripte zeitgesteuert starten

Soll ein Skript nicht interaktiv gestartet werden, sondern automatisch und zeitgesteuert, kann dieses auch
als sechster Kommandozeilenparameter eines Server-Prozesses in d.3 process manager angegeben
werden. Der Target-Eintrag in d.3 process manager sieht dann dhnlich aus wie folgender:

.\d3odbc32.exe haupt "" Master password D3P ext_groovy/myScript.groovy

d.3 hook & server scripting api (groovy) 150

d.veLop

7 d.3-Schnittstelle (D3Interface)

package com.dvelop.d3.server.core;

public interface D3Interface

{
public interface Archivelnterface // d.3 Archiv
public interface SqlD3Interface // d.3 SQL Datenbank
public interface D3Remotelnterface // Client API
public interface ScriptCallinterface // Server API
public interface Configinterface // Config-Parameter
public interface Loginterface // Logging
public interface HookInterface // Hook-Eigenschaften
public interface StorageManagerinterface //Storagemanager

public Archivelnterface getArchive();
public SqlD3Interface getSql();

public D3Remotelnterface getRemote();
public ScriptCallinterface getCall();
public Configinterface getconfig();

public Loginterface getlog();
public HookInterface getHook();
public StorageManagerinterface getStorageManager();
}
Hinweis

Das D3Interface wird vom Server bei allen Aufrufen registrierter Groovy-Funktionen als erster
Parameter (ibergeben.
Dadurch steht die d.3-Schnittstelle in allen Hook-, API- und Skript-Funktionen zur Verfligung.

d.3 hook & server scripting api (groovy) 151

d.veLop

7.1 d.3 Archiv (Archivelnterface)

Archivelnterface

public interface Archivelnterface {
public Document getDocument(String id, String contextUser);
public Document getDocument(String id);
public DocumentType getDocumentType(String id);
public PredefinedValueSet getPredefinedValueSet(String id);
public RepositoryField getRepositoryField(String id);
public User getUser(String id);
public UserGroup getUserGroup(String id);
public UserOrUserGroup getUserOrUserGroup(String id);
public AuthorizationProfile getAuthorizationProfile(String id);

public void removeTranslationFromCache(String entryPoint, Locale lang);
public Document newDocument();

public Document importDocument(Document doc, Path importFilePath);
public Document importDocument(Document doc);

}

Das Archivelnterface liefert verschiedene Java-Objekte, Giber die direkt auf die entsprechenden d.3-Archiv-
Objekte zugegriffen werden kann.

d.3 hook & server scripting api (groovy) 152

d.veLop

import com.dvelop.d3.server.core.D3Interface
import com.dvelop.d3.server.Document

import com.dvelop.d3.server.exceptions.D3Exception
import java.nio.file.Path

import java.nio.file.Paths

D3Interface d3 = getProperty("d3");

// Create an new empty document
Document newDoc = d3.archive.newDocument();

// Add system properties

newDoc.type = "DA1"; // 1D of target document

newDoc.status = Document.DocStatus.DOC_STAT_RELEASE; // Target state of document
newDoc.editor = "dvelop"; // Handler

newDoc.setText(1, "Import per Groovy Skript"); // Comment

// erweiterte Eigenschaften zuweisen

newDoc.field[1] = "Attribute value 1 for new document";

newDoc.field[2] = "Attribute value 2 for new document”;

newDoc.field[60][1] = "Multi value field 60-1 for new document";

newDoc.field[60][2] = "Multi value field 60-2 for new document";

// Define file for new document
Path importFile = Paths.get("D:\\temp\\my_file.txt");

try {
// Import the document

newDoc = d3.archive.importDocument(newDoc, importFile);

}

catch (D3Exception e) {
println e.message;
return;

}

println "Doc-1D of newly created document: " + newDoc.id;

7.1.1 Archivobjekte (ArchiveObject)

Archivelnterface

public interface ArchiveObject

{
public String getlId();

}

Alle d.3-Archivobjekte sind von dieser Klasse abgeleitet. Damit kann in allen Archivobjekten die d.3-ID des
Objekts ermittelt werden.

d.3 hook & server scripting api (groovy) 153

d.veLop

Document dog;
doc.id // Document ID

DocumentType docType;
docType.id //Document type

User user;
user.id //UserID

d.3 hook & server scripting api (groovy) 154

7.1.2 Dokument (Document)

Document

class Document extends ArchiveObject

{

d.3 hook & server scripting api (groovy)

d.veLop

public Field getField() // Groovy Collection Support for reading and writing the property values
public DocumentType getType()

public void setType(DocumentType type)
public void setType(String typeld)

public String getNumber()

public void setNumber(String docNumber)
public DocStatus getStatus()

public void setStatus(DocStatus docStatus)
public void setStatus(String docStatus)
publicint getVarnumber()

public void setVarnumber(int varNumber)
public UserOrUserGroup getEditor()

public void setEditor(UserOrUserGroup editor)
public void setEditor(String editor)

public String
public String
public String
public Long
public String
public void

public Timestamp
public Timestamp
public Timestamp
public Timestamp
public Timestamp

public Integer
public Integer
public void
public String
public boolean
public boolean
public boolean
publicint
public boolean
public Integer
public Integer
public Integer
public Integer
public String
public boolean

public void
public void
publicint
public String
publicint
publicint

getOwner()
getFilename()
getFileExtension()
getDocSize()
getText(int lineldx)
setText(int lineldx, String text)
getCreated()
getLastAccess()
getLastUpdateFile()
getLastUpdateAttribute()
getLastUpdate()
getSignaturesRequired()
getColorCode()
setColorCode(Integer colorCode)
getReleaseVersionStatus()
getlisVerified()
getiswWebPublished()
getlsinWorkFflow()
getNumericld()
getisArchived()
getLastAlterationNumber()
getAlterationNumberReleased()
getCodepage()
getMaxArchivelndex()
getCaption()
getHasMultData()

updateAttributes(String userld)
updateAttributes(String userld, boolean noHooks)

changeType (String docTypeld, String userld)
getPermission (String userld)

block (boolean block, String userld)

verify (String userld)

155

d.veLop

publicint transfer (String destination, String newEditor, String changeRemark, boolean asynchronous,
int archivindex, String userld)

publicint publishForweb (boolean publish, String userld)

publicint addDependent (String filename, String docStatus, String docExt, String userld)

publicint addDependent (String filename, DocStatus docStatus, String docExt, String userld)

publicint deleteDependent (char docStatus, String docExt, String userld)

publicint deleteDependent (String docStatus, String docExt, String userld)

publicint deleteDependent (String docStatus, String docExt, String userld)

publicint startLifetime (boolean overwriteOldDate, int lifeTimeDays)

publicint setCacheDays (char docStatus, int archivelndex, int daysinCache)

publicint checkFolderScheme (String userld);

public String getFileFormat()
public String getFileFormatPublic()
public void setFileFormat(String fileFormat)

public DocumentVersion[] getVersions()

public PhysicalVersion[] getPhysicalVersions()
public Integer getFileldCurrentVersion()
public Integer getFileldRelease()

public Timestamp getEndOfRetentionDate()
public DocumentNote[] getNotes()

public SysFields getSysField() // Groovy Collection Support fiir das Lesen und Schreiben von
Systemeigenschaften
public void addSysField(String fieldName)

public List<DocumentSysValue> getSysValues()
public Set<String> getSysFieldNames()

}

*) Der Collection Support fiir Fields ermdglicht die Nutzung des Subscript Operators [], fiir den Zugriff auf
die erweiterten Eigenschaften eines Dokumentes.

Document doc
doc.field[1] = "Value of property " // Writing value
println doc.field[1] // Reading value

// Accessing with property name

doc.field['"Name"] = "Meier" // Writing value
println "Name =" + doc.field["Name"] // Reading value

Hinweis

Wenn ein Feld nicht existiert oder ein Feld keinen Wert besitzt, so wird NULL zuriickgegeben.

d.3 hook & server scripting api (groovy) 156

d.veLop

Nutzung der Schnittstelle fir die Systemeigenschaften:

println doc.sysField["InvoiceNo"][1] // Reading value
doc.sysField["InvoiceNo"][1] = "Value of system property” //Add or change value / add new system property
with value

doc.sysField["InvoiceNo"].add("Wert") // Another way to do this
doc.sysField["InvoiceNo"].remove(2) // Delete value

doc.addSysField("New system field") // Add new system property without value
doc.sysField["InvoiceNo"].clear() // Delete all values for this property

println doc.sysFieldNames // Go through all system properties

println doc.sysField["InvoiceNo"].sysValues // Go though all values of one system property
println doc.sysValues // Go through all values of all system properties

d.3 hook & server scripting api (groovy) 157

d.veLop

7.1.2.1 Dokumentversionen (DocumentVersion)

DocumentVersion

public class DocumentVersion extends ArchiveObject
{
public enum Category {

DOC_VERS_REGULAR,
DOC_VERS_OVERWRITTEN,
DOC_VERS_BLOCKED,
DOC_VERS_REPLACED,
DOC_VERS_DELETED,
DOC_VERS_ERASED,
DOC_VERS_MIGRATED,
DOC_VERS_BOOKED,
INVALID_CATEGORY

J3

public String getDocld()

public boolean isCurrentVersion()
public boolean hasStatus()

public DocStatus getStatus()

public boolean hasHistStatus()
public DocStatus getHistStatus()
public boolean hasFileld()

public Integer getFileld()

public boolean hasHistFileld()
public Integer getHistFileld()
public Category getCategory()
public String getChangeReason()
public String getDeleteReason()
public PhysicalVersion getPhysicalVersion()
public String getCreator()

public Timestamp getCreateDate()
public String getReleaseUser()
public Timestamp getReleaseDate()
public String getBlockUser()
public Timestamp getBlockDate()
public String getArchiveUser()
public Timestamp getArchiveDate()
public String getVerifier()

public Timestamp getVerifyDate()
public String getDeleter()

public Timestamp getDeleteDate()
public Double getExternalVersionld()

d.3 hook & server scripting api (groovy) 158

d.veLop

Beispiel fiir den Zugriff auf die Versionen eines Dokuments.

import com.dvelop.d3.server.Document
import com.dvelop.d3.server.DocumentVersion
import com.dvelop.d3.server.PhysicalVersion
import com.dvelop.d3.server.DependentFile

Document doc
// Go / interate through all versions
for (version in doc.versions)
{
// Get the properties of the current Version
println version.archiveDate
println version.creator
println version.status

/-

// When the current Version has a physical file attached, get access
if (version.physicalVersion)
{

// Get the properties of the file

println version.physicalVersion.fileSize

println version.physicalVersion.fileLocalisation

println version.physicalVersion.fileFormat

/-

// Get all properties of depending files
for (dependentFile in version.physicalVersion.dependentFiles)
{

// Get the properties of each depending file

println dependentFile.fileFormat

println dependentFile.fileSize

println dependentFile.fileld

/-

d.3 hook & server scripting api (groovy) 159

7.1.2.2 Dateiversionen (PhysicalVersion)

PhysicalVersion

public final class PhysicalVersion extends ArchiveObject

{

enum FileLocalisation
FILE_LOC_NO_FILE,
FILE_LOC_DISK_ONLY,
FILE_LOC_STORAGE_ONLY,
FILE_LOC_DISK_AND_STORAGE,
FILE_LOC_PROXY_PLACEHOLDER,
FILE_LOC_PROXY_PENDING

2
public Integer getFileld()
public String getDocld()
public Document.DocStatus getStatus()
public String getFileExtension()
public String getFileFormat()
public Long getFileSize()
public FileLocalisation getFileLocalisation()
public String getD3Hash()
public String getFileHash()

public Signaturelnfo[] getSignaturelnfos()
public DependentFile[] getDependentFiles()

d.3 hook & server scripting api (groovy)

160

d.veLop

d.veLop

7.1.2.2.1 abhéangige Dateien (DependentFile)

DependentFile

public class DependentFile extends ArchiveObject
{
public String getExtension()
public String getDocld()
public Integer getFileld()
public String getFileFormat()
public FileLocalisation getFileLocalisation()
public Long getFileSize()
public Integer getFileSizelnKb()
public String getD3Hash()
public Timestamp getProcDate()
public String getExternalMedium()
public String getExpired()
public String getFlagStorageExport()
public Timestamp getStorageExportDate()
public String getD3FileHash()

7.1.2.2.2 Signaturen (Signaturelnfo)
Signaturelnfo

public class Signaturelnfo extends ArchiveObject
{
enum SigContentType
SIG_DETACHED, SIG_EMBEDDED, SIG_ATTACHED, SIG_EMBEDDED_AND_DETACHED,
SIG_INVALID_CONTENT_TYPE;
5
public String getExtension()
public SigContentType getContent()
public Integer getReachedNumber()
public Integer getRequestedNumber()
public Integer getReachedLevel()
public Integer getRequestedLevel()
public String getTodo()
public String getDone()
public String getRemark()

d.3 hook & server scripting api (groovy) 161

7.1.2.3 Systemeigenschaften (DocumentSysValue)

DocumentSysValue

public class DocumentSysValue extends ArchiveObject
{

public String getDocld()

public Integer getFieldId()

public String getFieldName()

public Integer getFieldindex()

public void setFieldIndex(int fieldIndex)

public String getFieldValue()

public void setFieldValue(String value)

public String toString()

7.1.2.4 Notizen (DocumentNote)

DocumentVersion

public class DocumentNote extends ArchiveObject
{

public String getMessage()

public User getUser()

public Timestamp getDateCreated()

}

d.3 hook & server scripting api (groovy)

162

d.veLop

d.veLop

Skript-Beispiel fiir die Ausgabe der Notizen eines Dokuments.

import com.dvelop.d3.server.core.D3Interface
import com.dvelop.d3.server.Document
import com.dvelop.d3.server.User

import com.dvelop.d3.server.DocumentNote
import java.text.SimpleDateFormat

D3Interface d3 = getProperty("d3")
Document doc = d3.archive.getDocument("P000000123")
println "Notes form the document <" + doc.id + "> :"

doc.notes.each {note ->
String noteCreated = new SimpleDateFormat("dd.MM.yyyy HH:mm:ss").format(note.dateCreated);
println " User:" + note.user.realName + " Created: " + noteCreated + " Note: " + note.message

}

7.1.3 Dokumentart (DocumentType)

DocumentType

class DocumentType extends ArchiveObject
{

public DocumentTypeAttribute getfield() // Groovy Collection Support fiir den Zugriff auf die Attribute der
Dokumentart

public String getDefaultName()

public String getName()

public String getType()

public boolean getlsFolder()

public boolean getlsExportedToStorage()

public boolean getlsSystemDocType()

public boolean getlsDummyType()

public boolean getlsMultiType()

public boolean getlsTemplateType()

public String getArchiveld()

public String getDsearchCorpus()

publicint getFieldNoByName(String attribName)

d.3 hook & server scripting api (groovy) 163

d.veLop

7.1.3.1 Eigenschaften einer Dokumentart (DocumentTypeAttribute)

DocumentTypeAttribute

public final class DocumentTypeAttribute extends ArchiveObject
{

public RepositoryField getRepositoryField()

public RepositoryField getRepoField()

public boolean getlsMandatory()

public boolean getisModifiable()

public boolean getlsHidden()

public boolean getViewlInSearchMask()

public boolean getViewInlmportMask()

public boolean getViewInResultSet()

7.1.4 Benutzer (User)

User

public final class User extends ArchiveObject

{
public enum MemberType {DIRECT, RECURSIVE};

public String getLongName()
public String getRealName()
public String getEmail()
public String getPhone()
public String getPlant()
public String getDepartment()
public boolean getlsCheckedOut()
public boolean getlsSysUser()
public String getCheckoutText()
public String getOptField(int idx)
public String getLdapDN()
public UserGroupl] getGroups()
public boolean isMemberOFfGroup(String groupld) // check of direct member (MemberType.DIRECT)
public boolean isMemberOfGroup(String groupld, MemberType memberType)
public AuthorizationProfile[] getAuthorizationProfiles()
public boolean hasAuthorizationProfile(String profileld)
public DocumentType[] getDocTypes()
}

Beispiel fiir die Nutzung in einem Groovy-Skript

d.3 hook & server scripting api (groovy) 164

d.veLop

import com.dvelop.d3.server.core.D3Interface
import com.dvelop.d3.server.User

import com.dvelop.d3.server.UserGroup

import com.dvelop.d3.server.AuthorizationProfile

// Get a user object
def user = d3.archive.getUser("dvelop")

// Reading some user properties
println "Die EMail-Adresse des Benutzers " + user.realName + " (" + user.id + ") lautet: " + user.email

// Get all groups, with the current user as a member
user.getGroups().each { group ->
println group.id + " - " + group.name

}

// Get all right profiles, with the current user as a member
user.getAuthorizationProfiles().each { profile ->

println profile.id + " - " + profile.name

}

// Get all document types, to which the user has access to
user.getDocTypes().each { docType ->
println docType.id + " - " + docType.name

}

d.3 hook & server scripting api (groovy) 165

d.veLop

7.1.5 Benutzergruppen (UserGroup/UserOrUserGroup)

User [UserOrUserGroup

public final class UserOrUserGroup extends ArchiveObject
{

public String getDefaultName()

public String getLongName()

public String getDisplayName()

public User getUser()

public UserGroup getUserGroup()

public final class UserGroup extends ArchiveObject

{
public enum MemberType {DIRECT, RECURSIVE};

public String getDefaultName()

public String getName()

public UserOrUserGroup[] getMembers()

public UserOrUserGroup[] getMembers(MemberType memberType)

public boolean isMemberOfGroup (String parentGroupld)

public boolean isMemberOfGroup (String parentGroupld, MemberType memberType)
public AuthorizationProfile[] getAuthorizationProfiles()

public boolean hasAuthorizationProfile(String profileld)

import com.dvelop.d3.server.core.D3Interface
import com.dvelop.d3.server.UserGroup

import com.dvelop.d3.server.UserOrUserGroup
import com.dvelop.d3.server.AuthorizationProfile

// Get user object
def userGroup = d3.archive.getUserGroup("Groupld");

println "Show group information for <" + userGroup.name + "> ";

// Get all users and groupy, which are members of the current Group
userGroup.getMembers(UserGroup.MemberType.RECURSIVE).each { userOrGroup ->
println userOrGroup.id + " - " + userOrGroup.defaultName

}

// Get all right profiles with the current group
userGroup.getAuthorizationProfiles().each { profile ->

println profile.id + " - " + profile.name

}

d.3 hook & server scripting api (groovy) 166

d.veLop

7.1.6 Wertemengen (PredefinedValueSet)

public final class PredefinedValueSet extends ArchiveObject
{

public String getName()

public String getDataType()

public String getSortFlag()

public String getValues(int valldx)

}

d.3 hook & server scripting api (groovy) 167

d.veLop

7.1.7 Eigenschaftsfelder (RepositoryField)

RepositoryField

public final class RepositoryField extends ArchiveObject

{
public String getName()
public String getText()
public String getDataType()
public boolean getHasPredefinedValues()
public Integer getPreferedFieldNumber()
public PredefinedValueSet getPredefinedValueSet()
public boolean getHasPlausibilityHookFunction()
public boolean getHasValuesProvidingHookFunction()
public void provideValuesForValueSet(List<Object> values)
}

7.1.8 Berechtigungsprofil (AuthorizationProfile)

AuthorizationProfile

public final class AuthorizationProfile extends ArchiveObject
{

public String getName()
}

7.2 d.3SQL Datenbank (SqlD3Interface)

SqlD3Interface

public interface SqlD3Interface {

public int execute(String query, List<Object> params) throws Exception;

public int execute(String query) throws Exception;

public GroovyRowResult firstRow(String sqlquery, List<Object> params) throws Exception;

public GroovyRowResult firstRow(String query) throws Exception;

public List<GroovyRowResult> executeAndGet(String query, List<Object> params) throws Exception;

public List<GroovyRowResult> executeAndGet(String query, List<Object> params, int maxRows) throws
Exception;

public List<GroovyRowResult> executeAndGet(String query, List<Object> params, int offset, int maxRows)
throws Exception;

public List<GroovyRowResult> executeAndGet(String query) throws Exception;

public List<GroovyRowResult> executeAndGet(String query, int maxRows) throws Exception;

public List<GroovyRowResult> executeAndGet(String query, int offset, int maxRows) throws Exception;

}

d.3 hook & server scripting api (groovy) 168

d.veLop

Hinweis

Die d.3-SQL-Schnittstelle bietet einen einfachen, groovy-konformen Zugriff auf die native
Datenbank-Schnittstelle des d.3-Servers.

Es ist kein JDBC Treiber erforderlich.

Modifizierer und Typ Methode und Beschreibung

int execute(String query, List<Object> params)

Ausfiihren eines SQL-Kommandos mit Bind-Variablen (z.B.
ein insert oder update Kommando)

int execute(String query)

Ausfiihren eines SQL-Kommandos ohne Bind-Variablen
(z.B. ein insert oder update Kommando)

GroovyRowResult firstRow(String sqlquery, List<Object> params)

Ausfiihren eines SQL-SELECT-Kommandos mit Bind-
Variablen.

Nur die erste Zeile der Ergebnismenge wird abgerufen und
zuriickgeliefert.

GroovyRowResult firstRow(String query)

Ausfiihren eines SQL-SELECT-Kommandos ohne Bind-
Variablen.

Nur die erste Zeile der Ergebnismenge wird abgerufen und
zuriickgeliefert.

List<GroovyRowResult> executeAndGet(String query, List<Object> params)

Ausfiihren eines SQL-SELECT-Kommandos mit Bind-
Variablen.

Alle Zeilen der Ergebnismenge werden abgerufen und
zuriickgeliefert.

List<GroovyRowResult> executeAndGet(String query, List<Object> params, int
maxRows)

Ausfihren eines SQL-SELECT-Kommandos mit Bind-
Variablen.

Die ersten maxRows Zeilen der Ergebnismenge werden
abgerufen und zuriickgeliefert.

d.3 hook & server scripting api (groovy) 169

Modifizierer und Typ

List<GroovyRowResult>

List<GroovyRowResult>

List<GroovyRowResult>

List<GroovyRowResult>

d.3 hook & server scripting api (groovy)

d.veLop

Methode und Beschreibung

executeAndGet(String query, List<Object> params, int
offset, int maxRows)

Ausfiihren eines SQL-SELECT-Kommandos mit Bind-
Variablen.

Beginnend mit offset werden maxRows Zeilen aus der
Ergebnismenge abgerufen und zuriickgeliefert.

executeAndGet(String query)

Ausfiihren eines SQL-SELECT-Kommandos ohne Bind-
Variablen.

Alle Zeilen der Ergebnismenge werden abgerufen und
zuriickgeliefert.

executeAndGet(String query, int maxRows)

Ausfiihren eines SQL-SELECT-Kommandos ohne Bind-
Variablen.

Die ersten maxRows Zeilen der Ergebnismenge werden
abgerufen und zuriickgeliefert.

executeAndGet(String query, int offset, int maxRows)

Ausfiihren eines SQL-SELECT-Kommandos ohne Bind-
Variablen.

Beginnend mit offset werden maxRows Zeilen aus der
Ergebnismenge abgerufen und zuriickgeliefert.

170

7.3

d.veLop

Client API (D3Remotelnterface)

D3Remotelnterface

public interface D3Remotelnterface {

}

// Parameter
public Map<String, Object> getimportParams();

public void setExportParams(Map<String, Object> exportParams);

// Table

public Iterable<Map<String,Object>> getimportTable(String[] columnNames);
public void setExportTable(lterable<Map<String,Object>> exportTable);
// File (table binary)

public ByteBuffer getimportBytes();

public void setExportBytes(ByteBuffer exportBytes);

public void setReturnCode(int retCode);

// d3fc header information

public String getLanguage();

public String getFunctionName();
public String getUserName();
public String getVersion();

public String getServerld();

public String getSourcelpAddress();

Das Interface ,D3Remotelnterface” kann fir die Implementierung eigener d3fc API-Funktionen per

Groovy genutzt werden (siehe Kapitel Plugin Schnittstelle fir APl Funktionen).

Aufterdem kann auf die Kontext-Informationen eines d3fc-Funktionsaufrufs (d3fc Header) zugegriffen

werden. Das heiflst wenn eine Hook-Funktion im Kontext einer d.3 API-Funktion ausgefiihrt wird, dann

kann auf Informationen des API-Aufrufs zugegriffen werden.

Modifizierer und Typ Methode und Beschreibung

Map<String, Object> getimportParams()

void

Entgegennehmen der Liste der Importparameter des
Aufrufers.

Key der Map = Name des Parameters

Value der Map = Wert des Parameters

setExportParams(Map<String, Object> exportParams)

Die Liste mit den Riickgabewerten fillen.
Schlissel in der Map = Name des Parameters
Wert in der Map = Wert des Parameters

d.3 hook & server scripting api (groovy) 171

Modifizierer und Typ

Iterable<Map<String,Object>>

void

ByteBuffer

void

void

String

String

String

String

String

d.3 hook & server scripting api (groovy)

d.veLop

Methode und Beschreibung

getimportTable(String[] columnNames)

Entgegennehmen aller Werte aus der d3fc-Importtabelle
der Spaltennamen, die per columnNames Liste angegeben
wurden.

Der Spaltenname ist jeweils der Schliissel in der
zurlickgelieferten Map.

setExportTable(lterable<Map<String,Object>> exportTable)

Senden der (ibergebenen Liste von Maps als d3fc-
Exporttabelle.
Der Spaltenname ist jeweils der Schliissel in der Map.

getimportBytes()

Entgegennehmen eines bindren Objekts vom Aufrufer. (zB.
einer Datei)

setExportBytes(ByteBuffer exportBytes)

Zurlickgeben eines bindren Objekts

setReturnCode(int retCode)

Den Returnwert der API-Funktion festlegen. Wird die
Methode nicht aufgerufen, so ist der Defaultwert
"0" (Erfolg) zuriickgeliefert.

getlLanguage()

Sprachkirzel, mit dem die aktuelle API-Funktion aufgerufen
wurde

getFunctionName ()

der Funktionsname der aktuellen API-Funktion

getUserName ()

d.3-Benutzer, der die aktuelle API-Funktion aufgerufen hat

getVersion()

Client-Versionsinformation des aktuellen API-Aufrufs
getServerId()

Kiirzel des d.3ecm Repositorys des aktuellen API-Aufrufs
(z.B."'P")

172

d.veLop

Modifizierer und Typ Methode und Beschreibung

String getSourceIpAddress()
Client-IP-Adresse des Aufrufers der aktuellen API-Funktion

1 import com.dvelop.d3.server.Document
2 import com.dvelop.d3.server.DocumentType
3 import com.dvelop.d3.server.Entrypoint
4 import com.dvelop.d3.server.User
5 import com.dvelop.d3.server.core.D3Interface
6
7 public class Test{
8 @Entrypoint(entrypoint = "hook_insert_entry_10") //-------------mmeeeeeenn
9 public int showAppld(D3Interface d3, User user, DocumentType docTypeShort, Document doc){
10
11 d3.log.error("--------- >>>>>>>" + d3.remote.getVersion());
12 def appID = d3.remote.getVersion()[0..2];
13 d3.log.error("APP-|D----------- >>>>>>>" + applD);
14 return O;

15 }// end of showAppld
16 }// end of Test

Hinweis

Das Aufrufen von d3fc Calls aus Groovy-Hook-Funktion ist aktuell nicht vorgesehen. Hier sollten
lokale Methoden Aufrufe iiber das d.3-Interface vorgezogen werden.

d.3 hook & server scripting api (groovy) 173

d.veLop

7.4 Server API Funktionen (ScriptCallinterface)

ScriptCallinterface

public interface ScriptCallinterface {
// Documents
public int document_change_type (String doc_type_short, String doc_id, String user_name);
public int document_delete (String reason, boolean del_from_each_status, boolean del_file_always, String
doc_id, String user_name, boolean del_privileged);
public String document_get_permission (String doc_id, String user_name);
public int document_block (boolean block, String user_name, String doc_id);
public int document_verify (String user_name, String doc_id);
public int document_transfer (String destination, String new_editor, String change_remark, boolean
asynchronous, int archiv_index, String user_name, String doc_id);
public int document_publish_for_web (boolean publish, String doc_id, String user_name);
// - Notes
public int note_add_Ffile(String file_name, String doc_id, String user_id);
public int note_add_string(String line, String doc_id, String user_id);
// Links
public String[] link_get_parents (String doc_id, String user_name);
public String[] link_get_children (String doc_id, String user_name);
publicint link_documents (String doc_id_parent, String doc_id_child, String user_name, boolean
folder_definition, boolean use_folder_plan);
public boolean link_exists (String doc_id_parent, String doc_id_child, boolean test_vice_versa);
publicint link_delete (String doc_id_parent, String doc_id_child, String user_name);
// dependent files
public int document_dependent_add (String filename, char doc_status, String doc_ext, String doc_id, String
user_name);
public int document_dependent_delete (char doc_status, String doc_ext, String doc_id, String user_name);
public int document_start_Llifetime (String doc_id, boolean overwrite_old_date, int life_time_days);
public int document_set_cache_days (String doc_id, char doc_status, int archive_index, int days_in_cache);
public int folder_create (Document doc);
public int document_register_dependent (String doc_id, int archive_index, char doc_status, String
user_group);
public String document_get_Ffile_path (String doc_id, char doc_status, int archive_index, String user_group,
String dependent_ext);
public int document_send_to_dsearch (String doc_id, String ocr_Ffile, int version, String dsearch_corpus,
boolean use_existent_ocr_file,
char doc_status, int archive_index, String user_name);
public int restore_from_jukebox (char doc_status, int archiv_index, String doc_id, String user_name);
public int restore_from_history (int aktion_id, String doc_id, String user_name);
// Rightinheritance:
public int add_inherit_doc_rights (String doc_id, String granter, String grantee, String right_flags, Timestamp
tstamp_expire);
public int remove_inherit_doc_rights (String doc_id, String user_name, String grantee);
// Inbox / resubmission
public int hold_Ffile_send (String recipient, String notice, String doc_id, Timestamp tstamp_acknowledge,
Timestamp tstamp_remember,
boolean expand_groups, boolean ignore_checkout, Timestamp date_activate, char type, String sender,
int chain_id, boolean remove_immediately,
boolean inherit_class_rule, Timestamp inherit_class_tstamp, byte inherit_class_right, boolean
check_write_access);

d.3 hook & server scripting api (groovy) 174

d.veLop

public String[] hold_File_find (String recipient, String doc_id, String user_name);

publicint hold_file_delete (long chain_id, Byte sent_received, boolean workflow_only, String recipient,
String doc_id, String user_name);

// Workflow:

public int workpath_end_document (String doc_id, String user_name, boolean delete_jobs);

public int workpath_start_document (String wfl_id, String doc_id, String user_name);

public int workpath_go_to_next_step (byte exit_value, String next_step_id, String doc_id, String
user_name);

// Authorization profiles:

public Long[] roll_get ();

public String[] roll_get_names ();

public String[] roll_get_users (long roll_id, String roll_name);

// TIFF / PDF functions

public int document_render (String source, String destination, byte render_option, boolean ocr, boolean
asynchronous,

boolean replace_doc, boolean overwrite, String doc_id, String user_name, char doc_status, int

archiv_index, String prio);

public int tiff_concat (String source, String destination, String source_rdl, String destination_rdl);

public int document_render_wfl_prot (String doc_id, String user_name);

// Object properties

public int object_property_set (String property_name, String object_id, byte object_class_id, String
property_value);

// Lock token

public int lock_token_acquire (String object_id, String object_name, String token, String object_info, int ttl,
String user_name);

public int lock_token_release (String object_id, String object_name, String token);

// Restriction sets:

public int d3set_add_Ffilter (String user_name, String doc_id, String set_name, String object_id, String filter,
boolean overwrite);

public int d3set_remove_filter (String user_name, String doc_id, String set_name, String object_id, String
filter);

public int d3set_remove_set (String user_name, String doc_id, String set_name, String object_id);

// new from version 8.0:

// Async jobs

public int d3async_job_open(String doc_id_ref, String job_type, String user_name);

public int d3async_job_set_attribute(String attr_name, String attr_value, int attr_type);

public int d3async_job_set_lin002_attribute(String attr_type, String attr_name, String attr_value);

public int d3async_job_close();

// Various / Miscellaneous

public int regular_expression_test (String regular_expression, String test_value, byte syntax_id, boolean
case_sensitivity);

public int send_email (String recipient, String notice, Timestamp date, String doc_id, String user_name,
String body_Ffile, String mail_format, boolean attach,

char doc_status, int archiv_index, String attach_abh, String attach_file, boolean use_recip_array,

boolean use_cc_array, boolean use_bcc_array);

}

d.3 hook & server scripting api (groovy) 175

d.veLop

Hinweis

Die Methoden des ScriptCallinterface entsprechen den Funktionen der d.3 server scripting API JPL
(alte Bezeichnung vor Version 8: d.3 Server API).

In der Dokumentation sind alle diese Funktionen mit Parametern und Riickgabewerten
beschrieben. Die dort beschriebenen globalen Variablen werden hier nicht unterstitzt.

d.3 hook & server scripting api (groovy) 176

d.veLop

def callScriptFunction(D3Interface d3, Document doc, reposField, def user)

{
def sqlQuery ="SELECT note FROM notes_table WHERE doc_id =?";
def resultRows = d3.sgl.executeAndGet(sqlQuery, [doc.id]);

resultRows.each

{
d3.log.info("Add note $it.note to document $doc.caption ");
d3.call.note_add_string(it.note, doc.id, user.id);
}
}

Wichtig

Fir den Aufruf von "folder_create" wird ein Dokument-Objekt bendtigt. Wenn keines als
Parameter zur Verfligung steht, so kann Uber die "Archive" Schnittstelle ein Dokument-Objekt fir
ein existierendes Dokument erzeugt werden.

Dieses wird als Vorlage benutzt und dessen Attribute werden wie gewiinscht angepasst.

import com.dvelop.d3.server.core.D3Interface
import com.dvelop.d3.server.Document

D3Interface d3 = getProperty("d3")
def doc = d3.archive.getDocument("P000000001", "d3user") // Please change the values

doc.type = "APERS"

doc.status = Document.DocStatus.DOC_STAT_RELEASE
doc.editor = "d3user"

doc.setText(1, "Comment text row 1")

doc.field[1] = "folder_create - Attrib 1"
doc.field[2] = "folder_create - Attrib 2"

/..

doc.field[60][1] = "folder_create - Attrib 60-1"
/..

def error = d3.call.folder_create(doc)
if (error)

println "$error within folder creation!"
else

println "Folder creation successfull!"

d.3 hook & server scripting api (groovy) 177

d.veLop

7.5 Config-Parameter (Configlnterface)

Configinterface

public interface Configinterface {
public String value(String paramName);
public String value(String paramName, Integer paramindex);

}

Uber das Configinterface kdnnen alle d.3 config Parameter abgefragt werden. Mégliche Parameternamen
sind alle Parameter, die in d.3 config angezeigt werden.

d3 d.3 config [Bearbeitungsmodus: Neuinstallation] O x

d.3 Konfiguration
Die Parameter sind zu logischen Gruppen zusammengefasst. Zu jedem Parameter erhalten Sie Hinweise.

Parameter db_server -

Beschreibung: Datenbank Management System

Sektion: d.3 Datenbankserver (Kenndaten)

Logische Gruppen Parameter Werte

@ d 3 Dokumentenserver (Nutzdaten) [~ Standardwert aktueller Wert

= W d.3 Datenbankserver (Kenndaten)
@ Datenbank Management System
O d.3 Repositorys

@ d.3 SMTP Unterstitzung

@ d.3 Retrieval Verhalten

@ d.3 Dokumentablage

@ d.3 Oberfldche und d.3 Verhalten

@ d.3 cmis connector

@ d.3 gateway Kommunikation

@ d.3 Asynchrone Verarbeitung

1 ORAC

pie folgenden DEMS stehen zur Auswahl:

8 Sekundirspeicher ORAC Oracle

@ Import-Verfahren HOSTIMP MSQL Microsoft SQL Server

@ APl-Logging-Parameter INFO Informix

W Hook-Funktionen DB2 DB2

@ Import DB2-400 iSeries Datenbank

i Workflow hd

Gruppenansicht Speichem Schlieken

alter Parameter-Name: db_server

D3Interface d3

// Getting the ID of the DBMS and writing it to the log file
def dbServer = d3.config.value("db_server");

d3.log.info("Database: ${dbServer}");

// Get the first hostimport directory
def hostimpDir1 = d3.config.value("HOSTIMP_IMPORT_DIR", 1)

d.3 hook & server scripting api (groovy) 178

d.veLop

7.6 Logging (Loglinterface)

Loginterface

public interface Loginterface extends GroovyLoglinterface{
public void critical(Object msg);
public void error(Object msg);
public void warn(Object msg);
public void info(Object msg);
public void debug(Object msg);
public boolean isDebugEnabled();
public void message(Object msg, int logLevel);

Hinweis

Des Weiteren ist die Groovy-Methode println() gemappt auf Loginterface.info(), so dass an jeder
Stelle im Groovy-Code einfach per println() in das d.3-Log geschrieben werden kann.

7.7 Hook-Eigenschaften (HookInterface)

Einige d.3-Eintrittspunkte besitzen spezifische Eigenschaften, die in der entsprechenden Hook-Funktion
gedndert werden kénnen. Diese Hook-Eigenschaften-Schnittstelle dient dazu, diese Eigenschaften
auslesen und dndern zu kénnen.

Wenn solche Eigenschaften existieren, so sind diese in der Beschreibung des d.3-Eintrittspunktes
angegeben. Beispiele dafir sind die Render-Optionen von "hook_rendition_entry_20" oder die E-Mail-
Eigenschaften von "hook_send_email_entry 20".

Aufruf der Methoden in einer Hook-Funktion:

+ Auslesen eines Eigenschaftswertes: d3.hook.getProperty("Eigenschaftsname")

« Andern eines Eigenschaftswertes: d3.hook.setProperty("Eigenschaftsname”, "Eigenschaftswert")
Bei mehrzeilige Eigenschaften entsprechend:

* Auslesen des ersten Wertes einer Mehrfacheigenschaft: d3.hook.getProperty("Eigenschaftsname”,

1)
« Andern des zweiten Wertes einer Mehrfacheigenschaft: d3.hook.setProperty("Eigenschaftsname”,
2, "Eigenschaftswert")

d.3 hook & server scripting api (groovy) 179

d.veLop

HookInterface

public interface HooklInterface {
public String getProperty (String propName);
public String getProperty (String propName, int propindex);
public void setProperty (String propName, String propValue);
public void setProperty (String propName, int proplndex, String propValue);

}

7.8 Fehlerbehandlung (D3Exception)

D3Exception

package com.dvelop.d3.server.exceptions;
public class D3Exception extends RuntimeException

public class AmbitiousResultException extends D3Exception
public class ConnectionError extends D3Exception

public class GroovyAPIFunctionException extends D3Exception
public class GroovyAPIFunctionRuntimeException extends D3Exception
public class GroovyHookException extends D3Exception

public class GroovyHookRuntimeException extends D3Exception
public class InvalidDateFormatException extends D3Exception
public class InvalidFormatException extends D3Exception

public class InvalidinputException extends D3Exception

public class InvalidParameterException extends D3Exception
public class ObjectNotFoundByldException extends D3Exception
public class ReferenceToUnknownObjectException extends D3Exception

public class SQLException extends D3Exception
public class TimeoutException extends D3Exception
public class UnconvertableException extends D3Exception
public class NullValueException extends D3Exception

d.3 hook & server scripting api (groovy) 180

d.veLop

7.9 Storagemanager

StorageManagerinterface

public interface StorageManagerinterface {
public void addFileToReload(String docld, int fileld);
public void addFileToReload(String docld, int fileld, String dependentExtension);
public void addFileToReload(String fileName); // Not document related file

public void addFileToReload(Document doc); // All files for the document
public void addFileToReload(PhysicalVersion physVers);
public void addFileToReload(DependentFile depFile);

public void setNumberOfFilesPerJob(int value);
public void setSMThreadsToUse(int value);

public void setReloadToCachedDocs(boolean value);
public void setMoveFilesToDocsDir(boolean value);

public String getReloadPrefix();
public int reloadFiles();

7.10 d.3-Systemeigenschaften

Die d.3-Schnittstelle definiert folgende Systemeigenschaften als Java System Properties:

Property-Name Beschreibung Beispielwerte

"d3.server.home" Das aktuelle d.3 server- "D:\d3\d3server.prg"
Programmverzeichnis

"d3.server.version" Die d.3 server-Versionsnummer "08.01.00.05"

"d3.server.systemUser" Der Systembenutzername des "D3Server", "D3Async", "hostimp",
aktuellen d.3 server-Prozesses "Master"

"d3.repository.uuid” Die Archive-UUID des d.3- "8be6de08-d009-4c2b-
Repositorys a33d-38a3a6458617"

Diese konnen abgefragt werden per Aufruf: System.getProperty("Property-Name")

d.3 hook & server scripting api (groovy) 181

d.veLop

1 import javax.swing.JOptionPane
2 import javax.swing.UIManager
3
4 def scriptRequireD3Version = "08.01.00.19"
5
6 UlManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
7
8 if (System.getProperty("d3.server.version") < scriptRequireD3Version)
9 |
10 showMessageDialog("This script requires d.3 server version <i>${scriptRequireD3Version}</i> or
later!", "Check d.3 server version")
11 return
12 }
13
14 def showMessageDialog(String messageHtml, String title)
15 {
16 JOptionPane.showMessageDialog(null, "<htm(>" + messageHtml + "</html>", title,
JOptionPane.ERROR_MESSAGE);
17 }

d.3 hook & server scripting api (groovy) 182

d.veLop

8 Debugging

Um Groovy-Code debuggen zu kénnen, muss der Java Remote Debugging Support in d.3 config aktiviert
werden (Einstellung Java Remote Debugging (JAVA_REMOTE_DEBUGGING) unter Java/Groovy).

Dadurch wird die Java Virtual Machine beim Laden durch die d.3-Server-Prozesse im Debugmodus
gestartet.

AnschlieBend ist es moglich, sich per Remote Java Debugger mit einem d.3-Server-Prozess zu verbinden,
um die darin ausgefihrten Groovy Hooks zu debuggen.

Fir die Kommunikation wird Port 43400 benutzt. Da jeder d.3-Prozess eine eigene Java Virtual Machine
(JVM) startet, werden die benutzten Ports hochgezahlt.

Der erste mit aktiviertem JAVA_REMOTE_DEBUGGING gestartete Prozess 6ffnet Port 43400, der zweite
Port 43401 und so weiter.

Der ermittelte Port wird beim Start der JVM per Meldung Java Remote Debugging Port in das d.3-Log
ausgegeben.

Hinweis

Die JVM wird von d.3 On-Demand beim ersten Zugriff auf Groovy-Code gestartet und steht damit
i.d.R. noch nicht direkt nach Prozess-Start zur Verfligung.

Wie Remote Debugging aus Eclipse heraus verwendet werden kann, wird auf der Seite Remote-Debugging
mit Eclipse beschrieben.

8.1 Remote Debugging mit Eclipse

Haufig missen Sie wahrend der Entwicklung von Hook-Funktionen Fehler finden und beheben. Neben der
klassischen Variante, alle relevanten Variablen in das d.3 Log zu schreiben, kdnnen Sie auch "Remote
Debugging" verwenden. Dabei 6ffnet jeder d.3-Server-Prozess einen Port, zu dem Sie sich mit Eclipse
verbinden und ganz genau den Funktionsablauf kontrollieren kénnen.

Hinweis

Dadurch wird die Java Virtual Machine beim Laden durch die d.3-Server-Prozesse im Debugmodus
gestartet.

Die JVM wird von d.3 On-Demand beim ersten Zugriff auf Groovy-Code gestartet und steht damit
i.d.R. noch nicht direkt nach Prozess-Start zur Verfligung.

Der erste d.3-Server-Prozess, der startet, verwendet den Port 43400, der zweite Prozess verwendet 43401
und so weiter.

d.3 hook & server scripting api (groovy) 183

d.veLop

Beachten Sie, dass auch d.3 async- und d.3 Hostimport-Prozesse Remote Debugging unterstiitzen.
Beachten Sie auRerdem, dass ein Archiv Giblicherweise durch mehrere Server-Prozesse bedient wird. Das
hat zur Folge, dass Sie sicherstellen missen, zum korrekten Serverprozess verbunden zu sein. Der
einfachste Weg, dies zu gewahrleisten, ist, nur einen d.3 Server-Prozess auszufihren.

Wichtig

Um Remote Debugging zu verwenden, gehen Sie die folgenden Schritte durch:

Erstellen Sie eine neue Remote Java Application.

El

Waihrend des Remote Debugging kann der d.3-Serverprozess keine anderen Aufgaben verarbeiten.
Es sollte daher niemals im Produktivbetrieb Remote Debugging durchgefiihrt werden.

Aktivieren Sie in d.3 admin > d.3 config > Java/Groovy > Java Remote Debugging.
In Ihrem Eclipse-Projekt wahlen Sie Run > Debug Configurations.

Geben Sie bei den Connection Properties die Adresse des zu debuggenden Systems an.

= Debug Configurations
Create. manage. and run configurations
Aftach to a Java virtual machine accepting debug connections
R —+
Li &S x| H &~ Marme: | TestHaok |
bype filter test I Connect E‘é/ Source\l S| Qommonw
@ Groowy Console Project:
Groowy Script -
Groowy Shell | Derno-Projekt | | Browse,,, |
Java Applet Connection Type:
3] lava Application
Ju JUnit |Standard (Socket Attach) v|
taven Build Conngction Properties:
-
“ Remote Java Applicatior Hast: | d3server testsysterms local |
E TestHook
Juy Task Contest Test Part: | 43400 |
[&llow termination of remote Wh
<] [[T> . || - |
ewvert
Filter matched 10 of 10 iterns & dad
@ | Debug | | Claose |

5. Wahlen Sie Debug, um das Remote Debugging zu starten.

6. Sie konnen jetzt in lhrem Quelltext Breakpoints setzen, an denen die Ausfiihrung unterbrochen

wird, sodass Sie den Ablauf manuell priifen und fortfiihren kénnen.

d.3 hook & server scripting api (groovy)

184

d.veLop

Hinweis

Das Thema "Debugging” im Detail zu beschreiben iberschreitet den Umfang dieser
Dokumentation. Sie konnen aber in Fachliteratur sowie im Internet umfangreiche Informationen zu
dem Thema finden.

8.2 Remote Debugging mit IntelliJ IDE

Auf dieser Seite werden die notwendigen Schritte beschrieben, um Groovy Hooks eines d.3 Server
Prozesses mit Hilfe von IntelliJ IDEA zu debuggen.

Hinzufiigen der Debugkonfiguration

1. Wahlen Sie Gber das Dropdown-Mend fir Laufkonfiguration Edit ConFigurations... aus.
2. Wahlen Sie in dem neu geoffneten Fenster Gber + (1) eine neue Remote-Konfiguration (2) aus.

Bl Run/Debug Configurations

3. Tragen Sie nun die Verbindungsdaten zu dem d.3-Applikationsserver ein, auf dem die Hooks und die
d.3-Server-Prozesse ausgefihrt werden.
4. Dazu werden Adresse (1) oder FQDN benétigt, sowie der Debug-Port des d.3-Server-Prozesses (2).

d.3 hook & server scripting api (groovy) 185

d.veLop

5. AbschlieRend wéhlen Sie das Projekt-Modul aus IntelliJ aus (3), welches Ihr Hook-Projekt enthalt.

Name: | RemoteDebug Share Single instance only

Configuration Logs

Durchfiihren des Debugging

1.

Setzen Sie an gewiinschten Codezeilen Breakpoints durch einen Linksklick der Maus neben der
Zeilennummer.

2. Stoppen Sie alle d.3-Server-Prozesse

3. Starten Sie einen einzigen d.3-Server-Prozess neu.

4. Aktivieren Sie das Remote Debugging in IntelliJ IDEA.

— >

Debug 'Remotelebug’ (Umschalt+F%)

Bei einem Aufruf der Hooks/Skripte werden nun die Breakpoints erreicht und pausieren den
Prozess zur Analyse.

d.3 hook & server scripting api (groovy) 186

d.veLop

Hinweis

Starten Sie erst das Server Interface. Im Log konnen Sie nachschauen, welcher Port vom
Serverprozess gerade belegt wurde. Suchen Sie einfach nach "Remote Debugging". Eine Logzeile
konnte bspw. folgendermalRen aussehen:

04.04 14:46:47,695 D3SRV_P 68B85950 : Java Remote Debugging Port: 43403

Diesen Port missen Sie in der Konfiguration hinterlegen. Starten Sie danach das Debugging und
fihren den Hook oder das Skript aus.

Hinweise zum Debugging

Hinweise zur Debug-Option finden sich auf der Seite Debugging.

Wadhrend des Debuggings ist das d.3-System nicht in der Lage andere Jobs zu verarbeiten.
Zum Thema Debugging verweisen wir auf gangige Fachliteratur.

Anleitungen zum Debugging unter IntelliJ IDEA finden sich beim Hersteller JetBrains: https://
www.jetbrains.com/idea/documentation/

d.3 hook & server scripting api (groovy) 187

https://www.jetbrains.com/idea/documentation/
https://www.jetbrains.com/idea/documentation/

d.veLop

9 Groovy-Grundlagen

Hinweis

Dies ist kein Groovy-Tutorial oder eine Dokumentation der Sprache, sondern eine Aufstellung von
ein paar Grundlagen, welche vielleicht interessant sind und den Einstieg erleichtern.

Interessante Links

Groovy-Dokumentation

http://www.groovy-lang.org/
http://www.groovy-lang.org/style-guide.html
http://grails.asia/groovy-list-tutorial-and-examples

Einfiihrung in die Sprache Groovy
http://www.javabeat.net/introduction-to-groovy-scripting-language/
Tutorials
https://www.timroes.de/2015/06/27/groovy-tutorial-for-java-developers/
http://mrhaki.blogspot.de/

z.B. verschiedene Méglichkeiten um in Listen oder Maps nach Eintrdgen zu suchen:
http://mrhaki.blogspot.de/2009/10/groovy-goodness-finding-data-in.html
Coole deutsche Einfiihrung in Groovy
http://www.oio.de/public/java/groovy/groovy-einfuehrung.htm
http://www.oio.de/public/java/groovy-closures-artikel.htm

Groovy vs. Java

http://www.groovy-lang.org/differences.html

d.3 hook & server scripting api (groovy) 188

http://www.groovy-lang.org/
http://www.groovy-lang.org/style-guide.html
http://grails.asia/groovy-list-tutorial-and-examples
http://www.javabeat.net/introduction-to-groovy-scripting-language/
https://www.timroes.de/2015/06/27/groovy-tutorial-for-java-developers/
http://mrhaki.blogspot.de/
http://mrhaki.blogspot.de/2009/10/groovy-goodness-finding-data-in.html
http://www.oio.de/public/java/groovy/groovy-einfuehrung.htm
http://www.oio.de/public/java/groovy-closures-artikel.htm
http://www.groovy-lang.org/differences.html

d.veLop

9.1 Variablen und Strings

Hinweis

Die Ausgabe von Inhalten kann mittels des Befehls println erfolgen. Im Kontext d.3 wird dieser

Befehl als Infomeldung im Logfile ausgegeben. Es kann aber auch direkt mit der Log-Funktion

"d.log.info(..)" gearbeitet werden.

Variablen definieren

Variablen kénnen mit Groovy mittels dynamic typing Gber das Schlisselwort def definiert werden.

Natdrlich kann in Groovy auch mit den gdngigen Java-Typen gearbeitet werden.

Hinweis

Hierbei sollten Sie nie ein und die selbe Variable fiir unterschiedliche Typen nutzen!

OVCoO~NATUVLT A WN =

10
11
12
13
14

package com.dvelop.scripts;
import com.dvelop.d3.server.core.D3Interface;

D3Interface d3 = getProperty("d3");

defx=42;
d3.log.info("$x --> " + x.getClass());

x = "Hello World";

d3.log.info("$x --> " + x.getClass());

// Output:

//30.11 09:44:48,258 Master 10080CD8 D3B: 42 --> class java.lang.Integer
//30.11 09:44:48,258 Master 10080CD8 D3B: Hello World --> class java.lang.String

Was hat ein GString mit Strings zu tun?

Mittels Groovy kdnnen Variablen innerhalb eines Strings aufgeldst werden. Dazu werden die Variablen mit

einem $-Zeichen vorangestellt in den String integriert. Dieses Konzept nennt man dann GString.

d.3 hook & server scripting api (groovy) 189

owvwoo~NaauThWN =

—_

d.veLop

package com.dvelop.scripts;
import com.dvelop.d3.server.core.D3Interface;

D3Interface d3 = getProperty("d3");

def x ="World";
d3.log.info("Hello, $x");

// Output:
//30.11 09:44:48,258 Master 10080CD8 D3B: Hello, World

Man kann auch auf einzelne Teilstrings innerhalb dieser Schreibweise zugreifen, dazu muss aber dann mit

geschweiften Klammern gearbeitet werden. Uber eine dhnliche Schreibweise, wie man zum Zugriff auf

Array-Elemente nutzt, kann in Groovy auch auf einzelne Buchstaben innerhalb eines Strings zugegriffen

werden.

OOV oO~NOTULTDRWN =

_

package com.dvelop.scripts;
import com.dvelop.d3.server.core.D3Interface;

D3Interface d3 = getProperty("d3");
def firstName = "Douglas";
defname ="Adams";

d3.log.info("Hello, ${firstName[0]}. $Sname");

// Output:
//30.11 09:44:48,285 Master 10080CD8 D3B: Hello, D. Adams

Mehrzeilige Strings

In Groovy kénnen Strings Gber mehrere Zeilen definiert werden, dazu werden dann am Anfang und Ende

drei Anfiihrungszeichen bendétigt.

VCoOoO~NaaTULT D WN =

package com.dvelop.scripts;
import com.dvelop.d3.server.core.D3Interface;

D3Interface d3 = getProperty("d3");

defs="""Thisis
a multiline

string""";

d3.log.info(s);

// Output:

//30.11 09:50:34,925 Master 10080CD8 D3B: This is
//30.11 09:50:34,925 Master 10080CD8 D3B: a multiline
//30.11 09:50:34,925 Master 10080CD8 D3B: string

d.3 hook & server scripting api (groovy) 190

d.veLop

9.2 Bedingungen
Im Vergleich mit Java gibt es hier nicht viele Unterschiede, aus diesem Grund werden an dieser Stelle nur
die Besonderheiten erwdhnt.

Save Navigation Operator

Sollinnerhalb einer Objektstruktur ein Wert tiberpriift werden, muss auch geprift werden ob die
einzelnen Elemente der Struktur ungleich null sind. Dies kann auf zwei Wegen erfolgen:

1.

if(company.getContact() != null && company.getContact().getAddress() != null &&
company.getContact.getAddress().getCountry() == Country.NEW_ZEALAND) {...}

if(company.getContact()?.getAddress()?.getCountry() == Country.NEW_ZEALAND) { ...}

Wenn also das Objekt selbst oder eine der Bestandteile nicht vorhanden ist, wird einfach null
zuriickgegeben und keine Fehlermeldung.

Elvis-Operator

In Groovy gibt es auch eine komprimierte Schreibweise fir ein If-Statement welches wie folgt genutzt

werden kann; dabei kommt nach dem "?" der Wahr-Zweig und nach dem ":" der Falsch-Zweig.
package com.dvelop.scripts;
import com.dvelop.d3.server.core.D3Interface;
D3Interface d3 = getProperty("d3");
def name = testValue != null ? testValue : "default”;
d3.log.info("Normal -->" + Name);

// Output

1
2
3
4
5
6 def testValue = null;
7
8
9
0 //10.12 10:58:23,238 Master 15041A9C D3B: Normal -->default

1

Mochten Sie nun nur dann einen anderen Wert zuweisen, wenn die (iberpriifte Variable nicht gesetzt ist,
kénnen Sie auch mit einer verklrzten Schreibweise arbeiten.

d.3 hook & server scripting api (groovy) 191

d.veLop

package com.dvelop.scripts;
import com.dvelop.d3.server.core.D3Interface;

D3Interface d3 = getProperty("d3");

def testValue = null;

def name = testValue ?: "default";

d3.log.info("Elvis -->" + Name);

// Output

//10.12 10:58:23,239 Master 15041A9C D3B: Elvis -->default

owvwoo~NaauThWN =

—_

Switch-Statement

Im Gegensatz zu Java ist Groovy im Switch-Statement nicht auf numerische Werte begrenzt. Folgendes
Beispiel verdeutlicht den Sachverhalt.

package com.dvelop.scripts;
import com.dvelop.d3.server.core.D3Interface;

D3Interface d3 = getProperty("d3");

switch(testValue){
case 100: // Integer

1
2
3
4
5
6 def testValue = "ABC";
7
8
9 d3.log.info("The number 100");
10

break;
11 case "ABC": // String
12 d3.log.info("The string ABC");
13 break;
14 case Long: // Class
15 d3.log.info("A Long value");
16 break;
17 case ['alpha’,'beta’,'gamma']: // List
18 d3.log .info("alpha, beta or gamma");
19 break;
20 case {it >-0.1 && it < 0.1}: // Closure
21 d3.log.info("A number near zero");
22 break;
23 case null: // null
24 d3.log.info("An empty value ");
25 break;
26 case ~/Groov.*/ : // Regulare Expression
27 d3.log.info("Begins with Groov");
28 break;
29 default:
30 d3.log.info("Something completely different");
31 }

d.3 hook & server scripting api (groovy) 192

d.veLop

9.3 Schleifen

Schleifen sind hier ebenfalls mit den Java-Basics identisch. Hier gibt es zusatzlich noch das Konzept der

"Closures", welches im nachfolgenden Kapitel kurz beschrieben wird. Da geschweifte Klammern fir

"Closures" reserviert sind erfolgt die initiale Befillung von Listen/Arrays mit eckigen Klammern.

For-Schleife

VCoOoO~NOTULTDE WN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

package com.dvelop.scripts;
import com.dvelop.d3.server.core.D3Interface;

D3Interface d3 = getProperty("d3");

def testList = ["This", "is", "example", "content"];
intn =0;
// A classic for-statement
for(n =0; n < testList.size(); n++){
d3.log.info("$n. For --> " + testList[n]);
}
// Output
//10.12 12:33:11,996 Master 15041A9C D3B: 0. For --> This
//10.1212:33:11,997 Master 15041A9C D3B: 1. For --> is
//10.12 12:33:11,997 Master 15041A9C D3B: 2. For --> example
//10.12 12:33:11,997 Master 15041A9C D3B: 3. For --> content

// A for-statement with collection
n=0;
for(defitem in testList){
d3.log.info((n++) + ". For-(Collection) --> " + item);

}

// Output

//10.12 12:33:11,998 Master 15041A9C D3B: 0. For-(Collection) --> This
//10.12 12:33:11,999 Master 15041A9C D3B: 1. For-(Collection) --> is
//10.12 12:33:11,999 Master 15041A9C D3B: 2. For-(Collection) --> example
//10.12 12:33:11,999 Master 15041A9C D3B: 3. For-(Collection) --> content

Each-Statements

d.3 hook & server scripting api (groovy) 193

VCoONAATUVLTHA WN =

package com.dvelop.scripts;

import com.dvelop.d3.server.core.D3Interface;

D3Interface d3 = getProperty("d3");

// Each-Statement
n=0;
testList.each{

d3.log.info((n++) + ".Each-->"+it);

}

// Output

//10.12 12:33:12,008 Master
//10.12 12:33:12,008 Master
//10.12 12:33:12,008 Master
//10.12 12:33:12,009 Master
// Each-Statement with index

15041A9C D3B: 0. Each --> This
15041A9C D3B: 1. Each --> is

15041A9C D3B: 2. Each --> example
15041A9C D3B: 3. Each --> content

testList.eachwithindex { val, idx ->

d3.log.info(idx +
}
// Output
//10.12 12:33:12,010 Master
//10.12 12:33:12,010 Master
//10.12 12:33:12,010 Master
//10.12 12:33:12,010 Master

Ein Collection-Statement

VCoOoONAATUVLTHA WN =

- A A
U DD WN = O

package com.dvelop.scripts;

. Each with index -->" + val);

15041A9C D3B: 0. Each with index --> This
15041A9C D3B: 1. Each with index --> is

d.veLop

15041A9C D3B: 2. Each with index --> example
15041A9C D3B: 3. Each with index --> content

import com.dvelop.d3.server.core.D3Interface;

D3Interface d3 = getProperty("d3");

n=0;

def newList = testList.collect {it; }

newList.each{

d3.log.info((n++) +". Collect --> " +it);

}

// Output

//10.12 12:33:12,012 Master
//10.12 12:33:12,012 Master
//10.12 12:33:12,012 Master
//10.12 12:33:12,012 Master

d.3 hook & server scripting api (groovy)

15041A9C D3B: 0. Collect --> This

15041A9C D3B: 1. Collect > is

15041A9C D3B: 2. Collect --> example
15041A9C D3B: 3. Collect --> Content

194

d.veLop

9.4 Closures

Closures sind kleine, unbenannte Funktionen welche direkt an eine Variable gebunden werden.

Eine Variable mit einer Funktion

VCoOoO~NaOaTuULT b WN =

package com.dvelop.scripts;
import com.dvelop.d3.server.core.D3Interface;

D3Interface d3 = getProperty("d3");

// Print Hello world
def optionOne = {
d3.log.info("Option 1: Hello World");

}
optionOne();

// Output
//09.12 13:30:35,082 Master 12041F98 D3B: Option 1: Hello World

Closures mit Variablen mit festen Typen

~N~Noui bk~ WN =

// Closures with parameters

def power = {intx, inty->
return Math.pow(x,y);}

d3.log.info("Option 2: " + power(2, 3));

// Output
//09.12 13:30:35,093 Master 12041F98 D3B: Option 2: 8.0

Closure mit einer untypisierten Variable

VCoOoO~NaOaTULT D WN =

10
11
12

package com.dvelop.scripts;
import com.dvelop.d3.server.core.D3Interface;

D3Interface d3 = getProperty("d3");

// Closure with one dynamic typing variable -------------===----
def optionThree = { what ->
d3.log.info(what); }
optionThree "Option 3: Hello World"; // same as optionThree("Option 3: Hello World");

// Output
//09.12 13:30:35,094 Master 12041F98 D3B: Option 3: Hello World

Closure, bei einer Variable kann auch die implizite Variable "it" genutzt werden

d.3 hook & server scripting api (groovy) 195

d.veLop

// Closure with an implizit argument -------------=========---
def optionFour = { d3.log.info(it); }
optionFour "Option 4: Hello World"; // same as optionFour("Option 4: Hello World");

// Output
//09.12 13:30:35,095 Master 12041F98 D3B: Option 4: Hello World

AU h WN =

Closure mit explizit KEINER Variablen

1 package com.dvelop.scripts;
2 import com.dvelop.d3.server.core.D3Interface;
3
4 D3Interface d3 = getProperty("d3");
5
6 // Closure without any argument
7 def optionFive = {->
8 d3.log.info("Option 5: This closure does not take any arguments."); }
9 optionFive();
10 // Output
11 //09.12 13:30:35,095 Master 12041F98 D3B: Option 5: This closure does not take any arguments.

Soll ein Wert zuriickgegeben werden, kann dies auch ohne Return erfolgen, dann wird der letzte
Wert zuriickgegeben.

1 package com.dvelop.scripts;
2 import com.dvelop.d3.server.core.D3Interface;
3
4 D3Interface d3 = getProperty("d3");
5
6 // Optional return value
7 def square ={it*it};
8 d3.log.info("Option 6: " + square(4));
9
10 // Output
11 //09.12 13:30:35,127 Master 12041F98 D3B: Option 6: 16

9.5 Datenbankanbindung
Zugriff auf eine d.3-interne Datenbanktabelle (d.3-SQL-Datenbank)

Der Zugriff auf Datenbanktabellen welche sich innerhalb der d.3-Datenbank befinden erfolgt Gber d.3-
SQL-Schnittstelle, welche einen einfachen Zugriff auf die Daten zur Verfiigung stellt.

Beispiel - Zugriff auf die d.3 interne Datenbank-Schnittstelle:

d.3 hook & server scripting api (groovy) 196

d.veLop

1 //()

2 package com.dvelop.scripts;

3 import com.dvelop.d3.server.core.D3Interface;

4

5 D3Interface d3 = getProperty("d3");

6

70 /@)

8 def resultRows = d3.sqgl.executeAndGet("SELECT name FROM CustomerData");
9 | //B3)

0

—_

resultRows.each{ println it.name; }

Kommentare zu den einzelnen Blocken

1. Zur Nutzung der d.3-SQL-Schnittstelle wird die Bibliothek D3 bendtigt und muss bei Bedarf
importiert werden. Da Gber den d3-server-interface-Aufruf implizit die Variable d3 zur Verfiigung
steht, kann diese Uber die Funktion getProperty("d3") im Skript zur Verfigung stellt werden und
steht damit auch wahrender Programmierung zur Codevervollstdndigung bereit.

2. Uber diverse Implementierungen/Funktionen kann nun ein SQL-Statement gegen die
Datenbanktabelle abgeschickt werden. Die Ergebnisse werden dabei in einer Map-Struktur
Uibergeben.

3. Mittels zum Beispiel eines Each-Statements konnen die Daten weiterverarbeitet werden.
Specials

Und fiir solche haufigen Abfragen, bei denen man nur einen Treffer hat oder nur einen haben will, existiert
die Methode FirstRow().

def sqlQuery ="SELECT max(product_count) as value FROM productDB WHERE product_id=?";
def sqlParams =[4711];

def firstRow = d3.sql.firstRow (sqlQuery, sqlParams);

int max_no = firstRow[0] + 1;

AWN =

Allerdings noch besser lesbar und damit besserer Code ist — mit AS highestNo im SQL-Kommando:

def sqlQuery ="SELECT max(product_count) as value FROM productDB WHERE product_id=?";
def sqlParams =[4711];

def firstRow = d3.sql.firstRow (sqlQuery, sqlParams)

int max_no = firstRow.highestNo + 1;

AWN =

Zugriff auf eine externe Datenbank

Hinweis

Fiir den Zugriff auf externe Datenbanken miissen die benétigten JDBC-Treiber bei den
Datenbankherstellern heruntergeladen werden und bereitgestellt werden. Dann kann Gber die
Standard-SQL-Schnittstelle eine Verbindung zur Datenbank aufgebaut werden und ein SQL-
Statement abgesetzt werden.

d.3 hook & server scripting api (groovy) 197

d.veLop

Beispiel - Zugriff auf eine externe Datenbank:

1 //()

2 import groovy.sql.Sql;

3 //@

4 def dbConnection = Sql.newlnstance("jdbc:sqlserver://localhost:1433;databaseName=Name",
"User", "Password");

5 //G3)

6 def resultRows = dbConnection.rows("SELECT name FROM CustomerData");

7 /4

8 resultRows.each{ println it.name; }

Kommentare zu den einzelnen Blocken

1. Zur Nutzung der d.3-SQL-Schnittstelle fiir externe Datenbankzugriffe, wird die Standard-Groovy-
Bibliothek SQL bendtigt und muss bei Bedarf importiert werden.

2. Um nun auf eine externe Datenbank zugreifen zu konnen, muss eine Verbindung zur Datenbank
hergestellt werden. Dazu wird hier ebenfalls eine Standard-Groovy-Funktion zum Aufbau einer
Verbindung newlnstance genutzt. Weitere Details zu den Parametern konnen den gdngigen
Dokumentationen zu den Datenbanken bzw. zu Groovy nachgeschlagen werden.

3. Uber diverse Implementierungen/Funktionen kann nun ein SQL-Statement gegen die
Datenbanktabelle abgeschickt werden. Die Ergebnisse werden dabei in einer Map-Struktur
Gbergeben.

4. Mittels zum Beispiel eines Each-Statements kdnnen die Daten weiterverarbeitet werden.

d.3 hook & server scripting api (groovy) 198

d.veLop

9.6 d.3-Specials

9.6.1 d.3-Konfigurationsparameter auslesen

Mochten Sie zum Beispiel ein Groovy-Skript sowohl in der Test-Umgebung als auch in der
Produktivumgebung nutzen, kénnen Sie iber die Abfrage von Konfigurations- und Serverparametern das
Skript so programmieren, dass ein Skript ohne Anpassungen in beiden Welten funktioniert. Eine
Portierung bzw. Anpassung ist damit dann nicht mehr notwendig. Eine Dokumentation der moglichen
Parameter ist in den relevanten d.3-Dokumentationen zu finden. Anbei ein kleines Beispiel.

d3.log.error(d3.conf.value("d3fc_server_id")); //Serverid

d3.log.error(d3.conf.value("d3fc_server_name")); // Server name
d3.log.error(d3.conf.value("db_server")); //Database type
d3.log.error(d3.conf.value("CUR_60ER_FIELD_NR"));// Current max . sizce of 60-ies feild

d3.log.error(d3.natives.getd3fcLanguage()); // Get the current language

// Output

//08.12 15:25:39,090 Master 130C1308 D3B: B

10 //08.12 15:25:39,090 Master 130C1308 D3B: localhost
11 //08.12 15:25:39,090 Master 130C1308 D3B: MSQL

12 //08.12 15:25:39,091 Master 130C1308 D3B: 100

13

VCoOoO~NAATULTDAWN =

Ab Version 8.1 konnen Parameter wie die aktuelle API-Sprache oder die APP-Version auch in Groovy
ermittelt werden.

1 import com.dvelop.d3.server.Document
2 import com.dvelop.d3.server.DocumentType
3 import com.dvelop.d3.server.Entrypoint
4 import com.dvelop.d3.server.User
5 import com.dvelop.d3.server.core.D3Interface
6 public class d3RemotelnterfaceExample{
7
8 @Entrypoint(entrypoint = "hook_insert_entry_10") //---------------=mm--=--
9 public int getCustomerDataForinvoice(D3Interface d3, User user, DocumentType docTypeShort,
Document doc){
10 d3.log.error("App-Version: " + d3.remote.getVersion());
11 d3.log.error("APP-ID:" + d3.remote.getVersion()[0..2]);
12 d3.log.error("App-Language: " + d3.remote.getLanguage());
13 return 0;
14 }// end of getCustomerDataForlnvoice
15

16 }// end of d3RemotelnterfaceExample

d.3 hook & server scripting api (groovy) 199

d.veLop

9.6.2 Klasse Fiir globale Konstanten
Im JPL wurde mit globalen Konstanten die Referenzierung auf Datenbank-Positionen der erweiterten

Eigenschaften sprechend gestaltet und zentral gesteuert.

Dies funktioniert aktuell nicht Giber eine separate Package-Struktur sondern kann nur im Root-Verzeichnis
mit allen notwendigen Dateien genutzt werden.

T T TS T T T o T I T =TT T

:(-:. = T | 0 v DieserPC » d3ecm - Daten (B} » d3 » d3serverprg » D3P » groowyHooks »
AL o~ Marne Anderungsdaturn Typ
, D3P)
. com 24.05,201611:34 Dateiordr
J BackUP_groouseAP]
|| DDF.groowy 28.11.2016 0%:04 GROCAY
, BackUP_groowyHooks
. || DT.grooy 2811206 0903 GROCAY
, BackUP_groowyLibs
|| EntryClass.groowy 2911206 1007 GROOYY
J grooweedP
 groowyHooks
. groowylibs

J jplHooks %

Dazu werden hier exemplarisch zwei Klassen angelegt, welche dann innerhalb der Hook-Funktionen
referenziert werden.

Klasse fir die Dok-Dat-Feld-Positionen

class DDF {
static final int FIRSTNAME = 4; // DB positions
static final int LASTNAME =5;
static final int STATE_ID =6;

}// end of DDF

U phhWN =

Klasse fir die Dokument- und Aktenarten

1 class DT {

2 static final String INVOCIE = "DRECH"; // Doc types

3 static final String ORDER ="DBEST";

4 static final String EMPLOYEE_FOLDER = "APERS"; // Folder types
5 }// end of DT

Da die Klassen, im gleichen Verzeichnis abgelegt wurden, konnen diese nun in den Hook-Dateien /
-Funktionen genutzt werden.

Nutzung der globalen Konstanten innerhalb einer Hook-Funktion

d.3 hook & server scripting api (groovy) 200

d.veLop

1 import com.dvelop.d3.server.Document
2 import com.dvelop.d3.server.DocumentType
3 import com.dvelop.d3.server.Entrypoint
4 import com.dvelop.d3.server.User
5 import com.dvelop.d3.server.core.D3Interface
6
7 class D3Hooks {
8
9 @Entrypoint(entrypoint = "hook_insert_entry_10")
10 public int myEntryPoint(D3Interface d3, User d3User, DocumentType docTypeShort, Document
doc){
11 d3.log.error("+++ MyGlobal-Test+++++ " + DDF.FIRSTNAME);
12 d3.log.error("+++ MyGlobal-Test+++++ ${DDF.LASTNAME}");
13 d3.log.error("+++ MyGlobal-Test+++++ $SDDF.STATE_ID");
14
15 d3.log.error("+++ MyGlobal-Test+++++ " + DT.INVOICE);
16 d3.log.error("+++ MyGlobal-Test+++++ " + DT.ORDER);
17 d3.log.error("+++ MyGlobal-Test+++++ " + DT.EMPLOYEE_FOLDER);
18 return O;

19 }// end of myEntryPoint
20 }// end of D3Hooks

d.3 hook & server scripting api (groovy) 201

d.veLop

10 Groovy-Hook-Beispiele

10.1 Eintrittspunkte

Hinweis
Fiir die Nutzung von Eintrittspunkten missen diese Bibliotheken importiert werden:
Globale d.3-Bibliotheken

« import com.dvelop.d3.server.core.D3Interface

 import com.dvelop.d3.server.Document

e importcom.dvelop.d3.server.User

« import com.dvelop.d3.server.DocumentType
Spezifische Bibliotheken Fiir die Eintrittspunkte

« import com.dvelop.d3.server.Entrypoint
« import com.dvelop.d3.server.Condition

Hinweis

Man kann auf jede beliebigen Hook-Eintrittspunkt beliebig viele Funktionen definieren! Man
kénnte also Lésungsbezogen, den Eintrittspunkt "hook_insert_entry 10" fiir die Uberpriifung der
Bestellnummer einer Rechnung nutzen, die Personalnummer eines Urlaubsantrag iberpriifen oder
die Daten eines Auftrags vervollstdandigen.

Die unterschiedlichen Eintrittstypen, bendtigen dann eine definierte Anzahl von Parametern in einer
vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-Funktion immer
das d.3 Objekt Gbergeben.

Hinweis

Fir die Hook-Eintrittspunkte Wertemengen, Validierung und Suche muss immer am Ende noch ein
zusdtzlicher Parameter vom Typ "Document" angehdngt werden.

Eine Kette von Eintrittspunkten

Wird zum Beispiel ein Dokument tiber die Verzeichnisiiberwachung (Hostimport) abgelegt, wird auf der
Server-Seite folgende Kette von Eintrittspunkten abgearbeitet:

* hook_hostimp_entry_10 - hook_insert_entry_10 - hook_insert_entry_20 —
hook_insert_exit_10 — hook_insert_exit_20 — hook_insert_exit_30

d.3 hook & server scripting api (groovy) 202

d.veLop

Wird zum Beispiel ein Dokument per manuellen Import abgelegt, wird auf der Server-Seite folgende Kette
von Eintrittspunkten abgearbeitet:

» hook_validate_import_entry_10 — hook_insert_entry 10 - hook_insert_entry_20 —
hook_insert_exit_10 - hook_insert_exit_20 - hook_insert_exit_30

[ValidatelmportEntry_10]

HostimportinsertEntry_10

InsertEntry_20

InsertEntry_30 RESERVIERT

Wird nun eine Funktion zu einem Eintrittspunkt mit einem Fehler bzw. einem Wert ungleich 0 beendet

bzw. liefert einen Wert ungleich 0 zuriick; wird die komplette Kette unterbrochen und das Dokument wird
zum Beipsiel nicht archiviert.

d.3 hook & server scripting api (groovy) 203

d.veLop

10.1.1 InsertEntry_10
Hallo Welt!

Hinweis
Szenario:

Wird ein Dokument im d.3-System abgelegt, soll im d.3 Log-File einfach nur eine Fehlermeldung
"Hallo Welt" angezeigt werde.

Dazu wird eine Hook-Funktion fiir den Eintrittspunkt "hook_insert_entry_10" hinterlegt, welche die
Kunden-Nummer (iberpriift.

package com.dvelop.hooks;

/(1)

// Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;

VCoOoO~NAAULTA, WN =

10 // Libraries to handle the different hook types
11 import com.dvelop.d3.server.Entrypoint;

12

13 1 //@2)

14 public class D3Hooks{

15 1 //B3)

16 @Entrypoint(entrypoint = "hook_insert_entry_10") //---------------mr-===--

17 1 //(4)

18 publicint insertEntry_10(D3Interface d3, User user, DocumentType docTypeShort, Document
doc){

19 1 //(5)

20 d3.log.error("Hello world!");

21 | //(6)

22 return 0;

23 }// end of insertEntry_10
24 }// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der groovyhook.jar-Datei.

2. Bereitstellung einer eigenen Klasse vom Typ "public”, wobei "public" im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen erfolgt, iber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4, Die unterschiedlichen Eintrittstypen, benétigen dann eine definierte Anzahl von Parametern in
einer vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-

d.3 hook & server scripting api (groovy) 204

d.veLop

Funktion immer das d.3-Objekt (ibergeben. Zusatzlich wird als letzter Parameter noch ein
Parameter vom Type "Document” bendotigt.

5. Nun wird mittels einfacher Log-Funktion eine Ausgabe im Log-File erzeugt.

6. Die Funktion wird mit einem Return-Wert "0" beendet.

Kontrolle und Erganzung von Dokumenteigenschaften bei Import

Hinweis
Szenario:

Waihrend der Ablage eines Dokumentes im d.3-System soll die Eigenschaft Kunden-Nummer gegen
eine Datenbank kontrolliert und bei Bedarf die restlichen Kundendaten automatisch erganzt
werden.

Die bendtigten Kundendaten in diesem Beispiel liegen dabei in einer Datenbank-Tabelle welche
innerhalb der d.3-Datenbank hinterlegt wurde damit konnen die Daten lber eine einfache SQL-
Implementierung abgerufen werden.

Dazu wird eine Hook-Funktion fiir den Eintrittspunkt "hook_insert_entry_10" hinterlegt, welche die
Kunden-Nummer Gberpriift.

d.3 hook & server scripting api (groovy) 205

VCoOo~NaauTh, WN =

19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

d.veLop

package com.dvelop.hooks;

//(1)

// Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;

// Libraries to handle the diferent hook types
import com.dvelop.d3.server.Entrypoint;

//(2)
public class D3Hooks{
//(3)
@Entrypoint(entrypoint = "hook_insert_entry_10")
//(4)
publicint insertEntry_10(D3Interface d3, User user, DocumentType docTypeShort, Document
doc){
//(5)
if(docTypeShort.id == "DINV"){
def customerlD = doc.field[14];
//(6)
if(customerID !'=""){
def sqlQuery ="SELECT name, street, zipCode, city FROM CustomerData WHERE
customerNo=?";
def sqlParams = [customerID];
def resultRows = d3.sql.executeAndGet(sqlQuery, sqlParams);

//(7)
if(resultRows.size() == 1){
doc.field["Street"] =resultRows[0].street;
doc.field["ZipCode"] = resultRows[0].zipCode.toString(); // ATTENTION!
doc.field[10] = resultRows|[0].city;
return O;
}
8
else {
return -1;
}
}
}
return O;

}// end of insertEntry_10
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ "public"”, wobei "public" im Kontext Groovy auch

weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen erfolgt, iber eine Groovy-

Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

d.3 hook & server scripting api (groovy) 206

d.veLop

4. Die unterschiedlichen Eintrittstypen, benétigen dann eine definierte Anzahl von Parametern in
einer vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-
Funktion immer das d.3-Objekt ibergeben. Zusatzlich wird als letzter Parameter noch ein
Parameter vom Type "Document" bendtigt.

5. Nun kann innerhalb der Funktion fiir einen bestimmten Dokumenttyp eine Validierung
vorgenommen werden, dabei wird der Dokumenttyp lber die Eigenschaft
pDocTypeShort.id eingeschrankt. In diesem Beispiel wird die Einschrankung mittels IF-Statement
vorgenommen, hier kann aber auch iiber eine "Condition" die Einschrdnkung auf einen oder
mehrere Dokumenttypen vorgenommen werden.

6. Nachdem die Kunden-Nummer aus den Dokumenteigenschaften ermittelt wurde, kann nun die
Kunden-Nummer gegen die Datenbank gepriift werden. Liegt dabei die Datenbanktabelle im d.3-
DB-Adressraum kann mittels der d.3-SQL-Implementierung die native Datenbank-Schnittstelle des
d.3-Servers genutzt werden.

7. Daim Kontext des Eintrittspunktes hook_insert_entry_10 alle Dokumenteigenschaften sowohl
lesend als auch schreibend zur Verfiigung stehen, kdnnen nun die zusatzlichen Kundendaten
erganzt werden. Hierbei kénnen die Eigenschaften iber die Datenbank-Position oder direkt und
sprechend mit der Eigenschaftenbezeichnung referenziert werden. Hier sollte man sich natdirlich
auf eine Art der Referenzierung einigen.

8. Konnte keine giiltige Kunden-Nummer ermittelt werden, erfolgt eine Riickgabe mit einem
Returnwert ungleich "0" und damit wird dann an dieser Stelle die Verarbeitungskette unterbrochen.

d.3 hook & server scripting api (groovy) 207

d.veLop

10.1.2 InsertExit_20

Eintrag in den Dokumentnotizen

Hinweis

Szenario:

Wurde eine Rechnung erfolgreich importiert, kann automatisch ein Eintrag in die Dokument-

Notizen geschrieben werden.

Details zu den hier verwendeten Groovy-Server-API-Funktionen konnen den spezifischen

Dokumentationen entnommen werden.

Dazu wird eine Hook-Funktion fiir den Eintrittspunkt hook_insert_exit_20 hinterlegt; der Eintrag wird

dann mittels Groovy-Server-API geschrieben..

O~NOTULT A WN =

package com.dvelop.hooks;

/(1)

// Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;

// Libraries to handle the diferent hook types
import com.dvelop.d3.server.Entrypoint;
//(2)
public class D3Hooks{
//3)
@Entrypoint(entrypoint = "hook_insert_exit_20")
//(4)
@Condition(doctype =["DINV"])
/1(5)
publicint insertExit_20(D3Interface d3, Document doc, def fileDest, def importOK,
User user, DocumentType docTypeShort){
//(6)
def returnValue = 0;
returnValue = d3.call.note_add_string("Hello World!", doc.id, user.id);
11(7)
return 0;
}// end of insertExit_20
}// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der groovyhook.jar-Datei.

2. Bereitstellung einer eigenen Klasse vom Typ "public”, wobei "public" im Kontext Groovy auch

weggelassen werden kann.

d.3 hook & server scripting api (groovy) 208

7.

d.veLop

Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen erfolgt, Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

In diesem Beispiel wird nun die Einschrankung mittels Condition auf einen oder mehrere
Dokumenttypen vorgenommen.

Die unterschiedlichen Eintrittstypen, bendtigen dann eine definierte Anzahl von Parametern in
einer vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-
Funktion immer das d.3-Objekt Gbergeben.

Nun kann mittels der Groovy-Server-API-Funktion "note_add_string" ein Eintrag zur Dokumentnotiz
hinzugefiigt werden.

War die Aktion erfolgreich wird ein Return-Wert gleich "0" zuriickgegeben.

Weiterleitung an einen Sachbearbeiter

Hinweis
Szenario:

Waurde eine Rechnung erfolgreich importiert, kann diese direkt einer Gruppe oder einem User in
den Postkorb gelegt werden.

Dazu wird eine Hook-Funktion fiir den Eintrittspunkt "hook_insert_exit_20" hinterlegt und (iber einer

Groovy-Server-Funktion das Dokument einem User in den Postkorb gelegt.

d.3 hook & server scripting api (groovy) 209

d.veLop

1 package com.dvelop.hooks;
2
3 /()
4 // Global d.3 libraries
5 import com.dvelop.d3.server.core.D3Interface;
6 import com.dvelop.d3.server.Document;
7 import com.dvelop.d3.server.User;
8 import com.dvelop.d3.server.DocumentType;
9
10 // Libraries to handle the different hook types
11 import com.dvelop.d3.server.Entrypoint;
12 import com.dvelop.d3.server.Condition;
13

14 // Special libraries
15 import groovy.sql.Sql;

16 import java.sql.Timestamp;

17

18 | //(2)

19 public class D3Hooks{

20 | //B3)

21 @Entrypoint(entrypoint = "hook_insert_exit_20")

22 | //(4)

23 @Condition(doctype =["DINV"])

24 1 //(5)

25 public int insertExit_20(D3Interface d3, Document doc, def fileDest, def importOK,
26 User user, DocumentType docTypeShort){

27 // Define variables

28 def returnValue =0;

29 Timestamp currentDate = new Date().toTimestamp();

30 | //(6)

31 returnValue = d3.call.hold_File_send(user.id, "Invoice: " + doc.getField("RechnungsNr"),
32 doc.id, currentDate, currentDate, false , true,

33 currentDate, "", "dvelop", 0, false, false, currentDate, 0, false);
34 /()

35 return 0;

36 }// end of insertExit_20
37 }// end of D3Hooks

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der groovyhook.jar-Datei.

2. Bereitstellung einer eigenen Klasse vom Typ "public", wobei "public" im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen erfolgt, Giber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. In diesem Beispiel wird nun die Einschrankung mittels "Condition" auf einen oder mehrere
Dokumenttypen vorgenommen.

5. Die unterschiedlichen Eintrittstypen, benétigen dann eine definierte Anzahl von Parametern in
einer vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-
Funktion immer das d.3-Objekt Gibergeben.

d.3 hook & server scripting api (groovy) 210

d.veLop

6. Nun kann mittels der Groovy-Server-API-Funktion "note_file_send" das aktuelle Dokument in die
Wiedervorlage eines d.3-Users, in diesem Beispiel desjenigen welcher das Dokument archiviert hat,

gesendet werden.
7. War die Aktion erfolgreich wird ein Return-Wert gleich "0" zuriickgegeben.

Update von anderen Dokumenten abhdngig vom aktuellen

Hinweis
Szenario:

Eine Akte wird im d.3-System angelegt und es sollen Daten aus der Akte in andere Dokumente

ibernommen werden.

Dazu wird eine Hook-Funktion fiir den Eintrittspunkt "hook_insert_exit_20" hinterlegt und iber einer

Groovy-Server-Funktion das Dokument einem User in den Postkorb gelegt.

d.3 hook & server scripting api (groovy) 211

VCoOo~NaauTh, WN =

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

d.veLop

//(1)
import com.dvelop.d3.server.core.D3Interface
import com.dvelop.d3.server.core.D3Interface.Archivelnterface

import com.dvelop.d3.server.Document
import com.dvelop.d3.server.DocumentType
import com.dvelop.d3.server.User

import com.dvelop.d3.server.Condition
import com.dvelop.d3.server.Entrypoint

//
/**

* Add function to entry point hook_insert_exit_30 for handling change in personal data
*

* @param d3, dog, fileDest, importOK, user, docType --> Server definied
* @return integer as result value
*/
//(2)
@Entrypoint(entrypoint="hook_insert_exit_30")
@Condition(doctype = ["PERSA"])
public int entryUpdatePersonalData(D3Interface d3, Document docObj, def fileDest, def
importOK, User user, DocumentType docType) {
int retValue;
//(3)
retValue = updatePersData(d3, doc, user);
return retValue;
}// end of entryUpdatePersonalData

//
/**

* Function for updating function

*

* @param d3 D3Interface object

* @param doc Document object

* @param login current user object

* @return integer as result value

*

/

//(4)

public int updatePersData(D3Interface d3, Document doc, User login) {

Document docObjRef;

//(5)
Archivelnterface archiveObj = d3.getArchive();

//(6)
def currentDocld = doc.id;
def client =doc.field[DDF.MANDANT]; //DDF...=Database position in ext. class
def persNumber = doc.field[DDF.EMPLOYEE_NO];
def persName =doc.field[DDF.EMPLYOEE_NAME];
//(7)
def sqlQuery ="SELECT... "
def resultRows = d3.sql.executeAndGet(sqlQuery);
def childDocObj;

//(8)

d.3 hook & server scripting api (groovy) 212

d.veLop

55 resultRows.each {

56 childRef = it.doku_id;

57 | //9)

58 childDocObj = archiveObj.getDocument(childRef, login.id);
59 | //(10)

60 docObjRef.field[DDF.EMPLOYEE_NAME] = persName;
61 //(11)

62 docObjRef.updateAttributes(login.id, true); // !!!!

63 }

64

65 return 0;

66 }// end of updatePersDataddd

Kommentare zu den einzelnen Blocken

Import der benétigten Bibliotheken aus der groovyhook.jar-Datei.

Bereitstellung einer Funktion auf dem Einspungpunkt "hook_insert_exti_20".

Aufruf der separaten Funktion zur Aktualisierung der Personaldaten.
Funktionsdefinition der Update-Funktion.

Bereitstellung eines Archivinteface-Objects zwecks Generierung der Document-Objekte.

AN A e

Die bendtigten Daten werden aud dem aktuellen Dokument ausgelesen, hierzu wurde hier
exemplarisch eine extn. Klasse zur Definition von globalen Konstanten genutzt.

7. Andieser Stelle konnte nun iber die bereitgestellten Eigenschaften eine Suche weiterer
Dokument-IDs zur aktuellen Personal-Nr. ermittelt werden; dies kann mittels SQL-Statement
erfolgen.

8. Uber eine Schleife werden dann alle erkannten Dokumente bearbeitet.

9. Fir jede Dokument-ID wird ein Dokument-Objekt erzeugt.

10. Die neue Eigenschaft wird zugewiesen.

11. Danach erfolgt ein Update der Daten, hier ist der zweite Parameter sehr wichtig, dieser sorgt mit
"true" dafir das eine nachgelagerte Hook-Validierung nicht stattfindet, "false" hatte hier den
gegenteiligen Effekt.

d.3 hook & server scripting api (groovy) 213

d.veLop

10.1.3 UpdateAttribEntry_20

Kontrolle und Erganzung von Dokument-Eigenschaften bei der Aktualisierung

Hinweis
Szenario:

Wird die Dokumenteigenschaft "Kunden-Nummer" aktualisiert sollen hier ebenfalls die Daten
gegen eine Datenbank kontrolliert und bei Bedarf die restlichen Kundendaten automatisch
erganzt werden. Die benétigten Kundendaten in diesem Beispiel liegen dabei in einer ext.
Datenbank und missen tber eine ext. Datenbankverbindung abgerufen werden.

Dazu wird eine Hook-Funktion fiir den Eintrittspunkt "hook_upd_attrib_entry_20" hinterlegt, welche die

Kunden-Nummer (iberpriift.

d.3 hook & server scripting api (groovy) 214

VCoOo~NaauTh, WN =

24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

package com.dvelop.hooks;

//(1)

// Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.Entrypoint;
import com.dvelop.d3.server.Condition;

// Special libraries
import groovy.sql.Sql;

//(2)
public class D3Hooks{

//(3)

@Entrypoint(entrypoint = "hook_upd_attrib_entry 20")

@Condition(doctype = "DRECH")
//(4)

d.veLop

public int updateAttributeEntry_20(D3Interface d3, Document doc, User user, DocumentType

docTypeShort,

DocumentType docTypeShortNew){

//(5)
return getCustomerData(d3, doc);
}// end of updateAttributeEntry_20

public int getCustomerData(D3 d3, Document doc){

//(6)
def customerID = doc.field[14];
if(customerID !'=""){

def dbConnection = Sql.newlnstance("jdbc:sqlserver://localhost:1433;databaseName=Name",

"User", "Password");

def sqlQuery ="SELECT name, street, zipCode, City FROM CustomerData WHERE

customerNo=?";
def sqlParams =[customerID];

def resultRows = dbConnection.rows(sqlQuery, sqlParams);

if(resultRows.size() == 1){

//(7)
doc.field[8] =resultRows[0].street;

doc.field[9] = resultRows[0].zipCode.toString(); // ATTENTION!

doc.field[10] = resultRows[0].city;
return 0;
}
else {
//(8)
return-1;
}
}
return O;
}// end of getCustomerData
}// end of D3Hooks

d.3 hook & server scripting api (groovy)

215

d.veLop

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der groovyhook.jar-Datei.

2. Bereitstellung einer eigenen Klasse vom Typ "public”, wobei "public" im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen erfolgt, iber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt. Des weiteren kénnen an dieser Stelle auch Gber eine sog. Condition auch
Einschrankungen auf die Dokumenttypen vorgenommen werden.

4. Die unterschiedlichen Eintrittstypen, benétigen dann eine definierte Anzahl von Parametern in
einer vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-
Funktion immer das d.3-Objekt Gbergeben.

Fir die Hook-Eintrittspunkte Wertemengen, Validierung und Suche muss immer am Ende noch ein
zusétzlicher Parameter vom Typ "Document" angehdngt werden.

5. Nun kann innerhalb der Funktion fiir einen bestimmten Dokumenttyp eine Validierung
vorgenommen werden, dabei wird der Dokumenttyp Uber die Eigenschaft
pDocTypeShort.id eingeschrankt.

6. Nachdem die Kunden-Nummer aus den Dokumenteigenschaften ermittelt wurde, kann nun die
Kunden-Nummer gegen die Datenbank gepriift werden. Dabei wird in diesem Beispiel eine
Verbindung zu einer externen MS-SQL-Datenbank vorgenommen und die Daten aus dieser
Datenbank ermittelt. Details zu der notwendigen Konfiguration konnen den relevanten
Dokumentationen entnommen werden.

7. Daim Kontext des Eintrittspunktes hook_upd_attrib_entry_20 alle Dokumenteigenschaften
sowohl lesend als auch schreibend zur Verfiigung stehen, kdnnen nun die zusatzlichen
Kundendaten erganzt werden.

8. Konnte keine giiltige Kunden-Nummer ermittelt werden, erfolgt eine Riickgabe mit einem
Returnwert ungleich "0" und damit wird dann an dieser Stelle die Verarbeitungskette unterbrochen.

d.3 hook & server scripting api (groovy) 216

d.veLop

10.1.4 Eine Klasse, mehrere Hook-Funktionen
Wie kdnnen mehrere Hook-Funktionen in einer Klasse zusammengefihrt werden? Eine Antwort kénnte
mit dem folgenden Skript-Beispiel gegeben werden.

d.3 hook & server scripting api (groovy) 217

d.veLop

// (1) Global d.3 libraries
import java.sql.Timestamp;

import com.dvelop.d3.server.Condition;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.DocumentType;
import com.dvelop.d3.server.Entrypoint;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.core.D3Interface;
import groovy.sql.Sql;

//
/1(2)
public class D3EntryPoints{
/1 (3)
@Entrypoint(entrypoint = "hook_insert_entry 10") //--------=-===--eeeeeenn
/1 (4)
public int getCustomerDataForinvoice(D3Interface d3, User user, DocumentType docTypeShort, Document
doc){
/1 (5)
if(docTypeShort.id == "DINV"){
d3.log.error("Hello world!");
//return getCustomerData(d3, doc);
}
return O;
}// end of getCustomerDataForlnvoice
/1 (6)
@Entrypoint(entrypoint = "hook_insert_exit_20") //--------===-=--eeeeeemn
@Condition(doctype =["DINV"])
public int sendInvoice(D3Interface d3, Document doc, def fileDest, def importOK, User user, DocumentType
docTypeShort){
// Define variables
def returnValue = 0;
Timestamp currentDate = new Date().toTimestamp();
// Add entry to document note
returnValue = d3.call.note_add_string("Hello World!", doc.id, user.id);
// SEND to user
returnValue = d3.call.hold_File_send(user.id, "Invoice: " + doc.field[14], doc.id, currentDate, currentDate,
fFalse, true, currentDate, "", "dvelop", 0, False, False, currentDate, 0, False);
}// end of sendlinvoice

/1(7)

@Entrypoint(entrypoint = "hook_validate_import_entry_10") //--------------

@Condition(doctype =["DINV"])

public int justDummy(D3Interface d3, User user, DocumentType docTypeShort, Document doc){
return O;

}// end of justDummy

/1 (8)
@Entrypoint(entrypoint = "hook_upd_attrib_entry_20") //-------------------
public int updateCustomerDataForinvoice(D3Interface d3, Document doc, User user, DocumentType
docTypeShort, DocumentType docTypeShortNew){
if(docTypeShort.id == ["DINV"] {
def oldDocOnj = d3.archive.getDocument(doc.id); // TODO alte inhalte
return getCustomerData(d3, doc);

d.3 hook & server scripting api (groovy) 218

d.veLop

}
return O;
}// end of updateCustomerDataForlnvoice

/1(9)
public int getCustomerData(D3Interface d3, Document doc){

def customerlD = doc.field[1];
if(customerlD != null && customerID !=""){
def dbConnection = Sql.newlInstance("jdbc:sqlserver://Teilnehmer-VM.training.d-velop.de\
\SQLEXPRESS:0;databaseName=SolutionsDB", "dEcsFormsDBUser", "Academy1!");
def sqlQuery ="SELECT name, street, zipCode, city FROM CustomerData WHERE customerNo =?";
def sqlParams = [customerID];
def resultRows = dbConnection.rows(sqlQuery, sqlParams);
//def resultRows = d3.sgl.executeAndGet(sqglQuery, sqlParams);

if(resultRows.size() == 1){

doc.field["StraRe"] = resultRows[0].street.trim();
doc.field["Postleitzahl"] = resultRows[0].zipCode.toString(); // ATTENTION!
doc.field[5] = resultRows|[0].city.trim();

doc.field[1] = resultRows[0].name.trim();

doc.setText(1, "Inhalt von Groovy");
return O;

}
else{
return -1;

}
}

return O;
}// end of getCustomerData
}// end of d3Hooks

Kommentare zu den einzelnen Blécken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ public, wobei public im Kontext Groovy auch
weggelassen werden kann.

3. Um nun eine Groovy-Funktion einem Eintrittspunkt zuzuweisen, erfolgt Gber eine Groovy-
Annotation mit den vorgegebenen Werten, eine Registrierung der Funktion zu einem
Eintrittspunkt.

4. Die unterschiedlichen Eintrittstypen bendtigen dann, die in der Groovy-Hook-Dokumentation dafir
beschriebenen Parameter in der dort angegebenen Reihenfolge. Als erster Parameter wird bei dem
Aufruf einer Groovy-Hook-Funktion immer das d.3-Objekt (ibergeben. Der Funktionsname muss
nicht, wie im JPL dem Eintrittspunkt entsprechen. Der Funktionsname doSomething muss hier
natirlich mit einem "sprechenden” Namen vergeben werden.

5. In diesem Beispiel wird der Dokumenttyp innerhalb der Funktion (iber ein If-Statement kontrolliert
und fir die Dokumentart Rechnung eine entsprechende Aktion ausgefihrt.

6. Ein weiteres Beispiel wird auf den Eintrittspunkt "InsertExit_20" und die Dokumentart Rechnung
"DRECH" realisiert. In diesem Beispiel wird tiber die Server-API-Calls "note_add_string" bei Eingang

d.3 hook & server scripting api (groovy) 219

d.veLop

einer Rechnung ein Eintrag in den Dokument-Notizen vorgenommen. Zusatzlich wird die Rechnung
noch mittels des Befehls "hold_file_send" an einen Sachbearbeiter gesendet.

7. Fir einen weiteren Eintrittspunkt hook_validate_import_entry_10 wird hier einfach mal eine
Funktion registriert, welche aber aktuell noch keine Aufgabe Gbernimmt.

8. Wird, zum Beispiel in einer Rechnung, die Kundennummer gedndert, missen auch die relevanten
Kundendaten in der Rechnung ebenfalls angepasst werden, dazu wird der Eintrittspunkt
hook_upd_attrib_entry_20 mit einer Funktion verlingt.

9. Dadie Ermittlung der Kundendaten an mehreren Stellen benétigt wird, wurde die Funktion an
dieser Stelle implementiert.

10.2 Validierung

Wichtig
Fir die Nutzung einer Validierung miissen diese Bibliotheken importiert werden:
Globale d.3-Bibliotheken

« import com.dvelop.d3.server.core.D3Interface
Spezifische Bibliotheken fiir die Validierung

» import com.dvelop.d3.server.Validate

Nitzliche Links
» Regular-Expression Online Tool: https://regex101.com/

Validierung einer Bestellnummer auf ein giiltiges Format

Hinweis
Szenario:

Die Bestellnummer soll immer dem Format "Zwei Zahlen-Zwei Buchstaben-Finf Zahlen" (/[0-9]{2}-
[a-zA-Z]{2}-[0-9]{5}/) genligen. Natirlich kann man das direkt in der d.3 Administration
konfigurieren, aber als Beispiel um die Funktionsweise fiir die Validierung zu demonstrieren, ist es
ebenfalls geeignet.

Zur Realisierung wird auf die Dokumenteigenschaft Bestellnummer eine Funktion zur Validierung
definiert.

d.3 hook & server scripting api (groovy) 220

https://regex101.com/

VCoOo~NaauTh, WN =

19
20
21

d.veLop

package com.dvelop.hooks;

//(1)
//Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;

// Libraries to handle the diferent hook types
import com.dvelop.d3.server.Validation;
//(2)
public class D3Validate{
//(3)
@Validation(entrypoint = "checkOrderNumber")
//(4)
public int checkOrderNumber(D3Interface d3, def currentValue, Document doc){
//(5)
def tmpValue = currentValue;
def matchFlag = (tmpValue ==~ /[0-9]{2}-[a-zA-Z]{2}-[0-9]{5}/);
//(6)
return(matchFlag?0:-1);
}// end of checkOrderNumber
}// end of D3Validate

Das Ganze, kann man auch, dank Groovy, etwas kiirzer realisieren.

OVCoOo~NaauTh, WN =

10
11
12
13
14
15
16
17
18

package com.dvelop.hooks;

//(1)
// Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;

// Libraries to handle the diferent hook types
import com.dvelop.d3.server.Validation;
//(2)
public class D3Validate{
//(3)
@Validation(entrypoint = "checkOrderNumber")
//(4)
public int checkOrderNumber(D3Interface d3, def currentValue){
//(6)
return((currentValue ==~ /[0-9]{2}-[a-zA-Z]{2}-[0-9]{5}/)?0:-1);
}// end of checkOderNumber
}// end of D3Validate

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der groovyhook.jar-Datei.

2. Bereitstellung einer eigenen Klasse vom Typ "public”, wobei "public” im Kontext Groovy auch

weggelassen werden kann.

3. Um nun eine Groovy-Funktion fir eine Validierung einer Dokumenteigenschaft nutzen zu konnen

erfolgt, Gber eine Groovy-Annotation mit den vorgegebenen Werten, eine Registrierung der

Funktion zu einer, in d.3 admin konfigurierten, Validierungsfunktion.

d.3 hook & server scripting api (groovy) 221

d.veLop

4. Die Validierungs-Funktion benétigt dann eine definierte Anzahl von Parametern in einer
vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-Funktion
immer das d.3-Objekt Gbergeben.

5. Innerhalb der Funktion kann nun der ibergebene Wert tiberpriift werden, im Beispiel mittels eines
reguldren Ausdrucks.

6. Entspricht der Wert einem glltigen Wert, kann eine 0 ansonsten eine 1 zuriickgegeben werden.

d.3 hook & server scripting api (groovy) 222

d.veLop

10.3 Wertemengen

In diesem Bereich werden die Moglichkeiten dargestellt, Wertemengen wie folgt bereitzustellen:

* als statische Liste
» ausinternen d.3-Datenbanktabellen
« als dynamische abhangige Datenbanktabelle

Benotigte Bibliotheken fiir die Wertemengen

Wichtig
Fir die Implementierung von Wertemengen missen diese Bibliotheken importiert werden:
Globale d.3-Bibliotheken

 import com.dvelop.d3.server.core.D3Interface

« import com.dvelop.d3.server.Document

* Import com.dvelop.d3.server.User

e import com.dvelop.d3.server.DocumentType
Spezifische Bibliotheken Fiir die Wertemengen

» import com.dvelop.d3.server.ValueSet
» import com.dvelop.d3.server.RepositoryField

Wichtig

Die Sortierung wird hier aus dem Script Gibernommen und nicht, wie (iber eine JPL-Wertemenge,
vom Client wieder verfalscht.

Einfache statische Wertemenge

Hinweis

Natdirlich macht es wenig Sinn eine statische Liste Giber ein Skript bereitzustellen, dies kann man
viel besser Uber die d.3-Administration! Aber fir ein einfaches Beispiel kann man hier mit einer
statischen Wertemenge starten.

d.3 hook & server scripting api (groovy) 223

VCoONAATUVLTHA WN =

19
20
21
22
23
24
25
26
27
28
29

d.veLop

//(1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;

//(2) Libraries to handle the different hook types
import com.dvelop.d3.server.ValueSet;

//(3) Special libraries
import com.dvelop.d3.server.RepositoryField;

//(4) Define the needed class
class SimpleValueSet{
//(5) Combine to the value set entry point
@ValueSet(entrypoint = "customerNumbers")
//(6) Define the function
def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType
docType,

int rowNo, int validate, Document doc){

//(7) Define static list of customer numbers
def customerList = ["4711", "4712","4713","4714"];

//(8) Prepare List for interaction
if(customerList.size() > 0){
reposField.provideValuesForValueSet(customerList);
}
}// end of getCustomerNumber
}// end of SimpleValueSet

Kommentare zu den einzelnen Blocken

No vk wnN =

Import der bendétigten Bibliotheken aus der groovyhook.jar-Datei.

Import der speziellen Bibliothek zur Unterstiitzung der Wertemengen.

Import einer speziellen Bibliothek zur Ricklieferung der Wertemenge an den Benutzer.
Definition einer 6ffentlichen Klasse.

Registrierung des Eintrittspunktes fiir die Wertemenge.

Definition der speziellen Funktion zur Ermittlung der Wertemenge.

Definition der statischen Wertemenge.

8. Bereitstellung der Wertemenge fiir den User.

Einfache statische Wertemenge aus einer Datenbanktabelle

Sinnvollerist es, die Wertemengen aus internen bzw. ext, Datenquellen zu ermittelt; dies wird in diesen

Beispielen vorgestellt.

Interne d.3-Datenbanktabelle

d.3 hook & server scripting api (groovy) 224

d.veLop

Hinweis

In diesem Beispiel werden die Daten aus einer internen d.3-Datenbanktabelle ermittelt, dabei
werden eventuelle Eingaben des Users nicht beriicksichtigt.

//(1) Global d.3 libraries
Import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;

//(2) Libraries to handle the different hook types
import com.dvelop.d3.server.ValueSet;

//(3) Special libraries
Import com.dvelop.d3.server.RepositoryField;

//(4) Example for an internal d.3 database table
class StaticValueSet{
//(5) Define the value set entry point
@ValueSet(entrypoint = "customerNumbers")
//(6) Define function for the value set
def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType docType,
int rowNo, int validate, Document doc){

//(7) Prepare sql statmenet
def sqlQuery = "SELECT custoemrNo FROM CustomerData ORDER BY customerNo DESC"; //!! ATTENTION

//(8) Execute sql statmenet
def resultRows = d3.sqgl.executeAndGet((String) sqlQuery);

//(9) Prepare list for user interface
if(resultRows.size() > 0 }{
reposField.provideValuesForValueSet(resultRows.collect{ it.customerNo });

}
}// end of getCustomerNumber

}// end of StaticValueSet

Kommentare zu den einzelnen Blocken

Import der bendétigten Bibliotheken aus der Datei groovyhook.jar.

Import der speziellen Bibliothek zur Unterstiitzung der Wertemengen.

Import einer speziellen Bibliothek zur Riicklieferung der Wertemenge an den Benutzer.
Definition einer 6ffentlichen Klasse.

Registrierung des Eintrittspunktes fiir die Wertemenge.

Definition der speziellen Funktion zur Ermittlung der Wertemenge.

No vk wDd =

Definition des SQL-Statements zur Ermittlung der Wertemenge.

d.3 hook & server scripting api (groovy) 225

d.veLop

8. Ausfiihrung des SQL-Statements gegen die interne Datenbank-Tabelle, wird hier Giber das d.3-
Objekt realisiert.
9. Darstellung der Wertemenge fiir den User.

Externe Datenbanktabelle

Hinweis

Wertemengen kénnen auch aus externen Datenbanken ermittelt werden; dieses Beispiel zeigt
einen Losungsansatz.

d.3 hook & server scripting api (groovy) 226

d.veLop

//(1) Global d.3 libraries
Import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;

//(2) Libraries to handle the different hook types
import com.dvelop.d3.server.ValueSet;

//(3) Special libraries
Import com.dvelop.d3.server.RepositoryField;

//(4) Example for an external database table
class StaticValueSet{
//(5) Define the value set entry point
@ValueSet(entrypoint = "customerNumbers")
//(6) Define the function
def getCustomerNumber(D3Interface d3, RepositoryField reposField, User user, DocumentType docType,
int rowNo, int validate, Document doc){

//(7) Prepare database Connection
def dbConnection = Sql.newlnstance("jdbc:sqlserver:<ServerName>\

\<InstanceName>:0;databaseName=<DatabaseName>", "<User>", ,<Password>");

//(8) Prepare sql statmenet
def sqlQuery ="SELECT customerNo FROM CustomerData ORDER BY customerNo DESC"; //!! ATTENTION

//(9) Execute sql statmenet
def resultRows = dbConnection.rows((String) sqlQuery);

//(10) Prepare lit for user interface
if(resultRows.size() > 0){
reposField.provideValuesForValueSet(resultRows.collect{ it.customerNo });

}

}// end of getCustomerNumber
}// end of StaticValueSet

Kommentare zu den einzelnen Blocken

Import der bendtigten Bibliotheken aus der Datei groovyhook.jar.

Import der speziellen Bibliothek zur Unterstiitzung der Wertemengen.

Import einer speziellen Bibliothek zur Ricklieferung der Wertemenge an den Benutzer.
Definition einer 6ffentlichen Klasse.

Registrierung des Eintrittspunktes fiir die Wertemenge.

Definition der speziellen Funktion zur Ermittlung der Wertemenge.

Initialisierung einer externen JDBC-Datenbankverbindung.

Definition des SQL-Statements zur Ermittlung der Wertemenge.

oo N A WDN =

Ausfihrung des SQL-Statements gegen die interne Datenbank-Tabelle, wird hier Gber das d.3-
Objekt realisiert.

—
o

Darstellung der Wertemenge fiir den User.

d.3 hook & server scripting api (groovy) 227

d.veLop

Abhangige dynamische Wertemenge aus einer Datenbanktabelle

Bereitstellung einer Kunden-Nummern-Liste
Hinweis
Szenario:

Es soll eine Wertemengen der Kunden-Nummern aus den Kunden-Datenbanktabelle fir die
Dokumenteigenschaft "KundenNr" bereitgestellt werden. Diese soll bei Bedarf tiber den
eingegebenen PLZ-Bereich dynamisch begrenzt werden kénnen.

Zur Realisierung wird auf die Dokumenteigenschaft Bestellnummer eine Funktion zur Validierung
definiert.

d.3 hook & server scripting api (groovy) 228

VCoOo~NaauTh, WN =

18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

d.veLop

//(1) Global d.3 libraries
import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
Import com.dvelop.d3.server.ValueSet;

// Special libraries
Import com.dvelop.d3.server.RepositoryField;
//(2)
public class D3ValueSets{
//(3)
@ValueSet(entrypoint = "dsCustomerNumbers")
//(4)
public int getCustomerNumber(D3Interface d3, RepositoryField reposField, User user,
DocumentType docType, int rowNo, int validate, Document doc)

{
//(5)
def zipCode =doc.field[9];
def whereClause ="";
if(zipCode !'=""){
whereClause = "WHERE zipCode LIKE '$SzipCode%"";
}
//(6)
def sqlQuery ="SELECT customerNo FROM CustomerNo SwhereClause ORDER BY
customerNo DESC"; // " ATTENTION
def resultRows = d3.sql.executeAndGet(sqlQuery);
//(7)
// Long-Version
def customerList = [];
resultRows.each{
customerList.add(it.customerNo);
}
if(customerList.size() >0){
reposField.provideValuesForValueSet(customerList);
}
// Short-Version
if(resultRows.size() > 0){
reposField.provideValuesForValueSet(resultRows.collect{ it.customerNo });

}

return 0
}// end of getCustomerNumber
}// end of D3ValueSets

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ "public"”, wobei "public" im Kontext Groovy auch

weggelassen werden kann.

d.3 hook & server scripting api (groovy) 229

d.veLop

3. Um nun eine Groovy-Funktion fir Wertemengen-Generierung einer Dokumenteigenschaft nutzen
zu konnen erfolgt, Gber eine Groovy-Annotation mit den vorgegebenen Werten, eine Registrierung
der Funktion zu einer, in d.3 admin konfigurierten, Wertemengenfunktion.

4. Die Wertemengen-Funktion benétigt dann eine definierte Anzahl von Parametern in einer
vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-Funktion
immer das d.3-Objekt Gbergeben.

5. Um die Aufgabenstellung zu realisieren, wird nun die Dokumenteigenschaft der PLZ ausgelesen
und bei Bedarf ein "Where"-Bestandteil des SQL-Statements zur Verfligung gestellt.

6. Dadie genutzte Datenbanktabelle innerhalb der d.3-Datenbank angelegt wurde, kann mittels einer
einfachen SQL-Implementierung, siehe hierzu auch das Beispiel fiir InsertEntry_10, auf die Daten
zugegriffen werden.

7. Wurden nun Daten zu dem bereitgestellten Postleitzahlen-Bereich gefunden, kdnnen diese mittels
der Funktion provideValuesForValueSet() der Dokumenteigenschaft bereitgestellt werden. Hier
wurden zwei unterschiedliche Wege der Implementierung aufgenommen; natirlich sollte nur ein
Weg verwendet werden.

d.3 hook & server scripting api (groovy) 230

d.veLop

10.4 Dokumentklassen

Wichtig
Fir die Implementierung von Wertemengen missen diese Bibliotheken importiert werden:

Globale d.3-Bibliotheken

 import com.dvelop.d3.server.core.D3Interface

« import com.dvelop.d3.server.Document

* Import com.dvelop.d3.server.User

e import com.dvelop.d3.server.DocumentType
Spezifische Bibliotheken Fiir den Dokumentklassen-Hook

+ import com.dvelop.d3.server.DocumentClass

Rechnungen nur von bestimmten Usern bearbeitbar

Hinweis
Szenario:

Rechnungen sollen nun, abhangig von der 3. Stelle der Kundennummern, nur von bestimmten
Benutzern bearbeitet werden konnen. Da in der Demo-Umgebung keine entsprechende
Datenverlinkung zwischen User und Kundennummer vorhanden ist, wird die Implementierung hier
exemplarisch mittels einer statischen Zuordnung (ber ein "Switch"-Statement realisiert.

Zur Realisierung wird eine neue Dokumentklasse "KundenRechnungen" in der d.3-Administration
angelegt, die bendtigte Implementierung ist im folgenden Beispiel dokumentiert.

d.3 hook & server scripting api (groovy) 231

VCoOo~NaauTh, WN =

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

package com.dvelop.hooks;

//(1)

// Global d.3 libraries

import com.dvelop.d3.server.core.D3Interface;
import com.dvelop.d3.server.Document;
import com.dvelop.d3.server.User;

import com.dvelop.d3.server.DocumentType;

// Libraries to handle the different hook types
import com.dvelop.d3.server.DocumentClass;

/1)

public class d3DocumentClass{

//(3)

@DocumentClass(entrypoint = "KundenRechnung")

//(4)

d.veLop

pudblicint customerDocClass(D3Interface d3, String value, DocumentType docType, String

userld, Document doc){
// STEP 1: Get customer number
def customerNo =value;
// STEP 2: Get current user
def currentUser = userld;

// STEP 3: Set user depending on the third place in the customer number

def returnFlag = false;
def tmpValue = customerNo[2];
//(5)
switch(tmpValue){
case "0":
returnFlag = (currentUser == "chef");
break;
case "1™
returnFlag = (currentUser == "smith");
break;
case "2"™
returnFlag = (currentUser == "larson");
break;
case "3"™
returnFlag = (currentUser == "parker");
break;
case "4":
returnFlag = (currentUser == "funny");
break;
default:
break;
}
return(returnFlag? 1:0);
}// end of customerDocClass
}// end of d3DocumentClasss

Kommentare zu den einzelnen Blocken

1. Import der benétigten Bibliotheken aus der Datei groovyhook.jar.

2. Bereitstellung einer eigenen Klasse vom Typ "public"”, wobei "public" im Kontext Groovy auch

weggelassen werden kann.

d.3 hook & server scripting api (groovy)

232

d.veLop

3. Um nun eine Groovy-Funktion fiir Dokumentklassen-Hooks nutzen zu kénnen wird iber eine
Groovy-Annotation mit den vorgegebenen Werten eine Registrierung der Funktion zu einer, in d.3
admin konfigurierten, Dokumentklasse vorgenommen..

4. Die Dokumenklassen-Funktion bendtigt dann eine definierte Anzahl von Parametern in einer
vorgegebenen Reihenfolge. Als erster Parameter wird bei dem Aufruf einer Groovy-Hook-Funktion
immer das d.3-Objekt Gbergeben.

5. In diesem Beispiel wird nun Gber eine Switch-Abfrage abhdngig von dem dritten Wert der
Kundennummer ein statischer User gesetzt. Hier kdnnte man natirlich auch mit "Restriction-Sets"
arbeiten.

Wichtig

Bitte beachten Sie hier das Dokumentklassen-Hooks mit viel Vorsicht genutzt werden
sollten, da diese je nach implementierter Funktion, sehr auf die Performance des
Gesamtsystems gehen!

6. Je nach dem wie diese Priifung abgelaufen ist, wird nun eine "1" (erlaubt) oder eine "0" (verweigert)
zurlickgegeben.

d.3 hook & server scripting api (groovy) 233

d.veLop

d.3 hook & server scripting api (groovy) 234

d.veLop

Index

Groovy 4

Groovy API-Funktionen 144
Groovy Hooks 3
Groovy-Skripte 150

A
Abhéngige Dateien 21, 23
Akten verkniipfen 108, 109
API-Funktionen 144
ArchiveObject 154 H

Hook-Projekte 12
c Hook-Projekte erstellen 12
Configinterface 178 HooklInterface 180, 181
D
d.3 Administration 3
d.3 Eintrittspunkte 20
d.3 hook 20
d.3 Schnittstelle 151

ImportDocument 30, 32, 34, 37, 38
ImportDocumnet 35
ImportNewVersionDocument 52, 54, 56, 57, 59, 61

Impressum 2
d.3 Server Interface 150
D3Exception 180 K
D3Interface 151 Konfiguration 3, 5
D3Remotelnterface 173 L

Debugging 183, 185
DeleteDocument 72, 74
DocumentType 163
DocumentTypeAttribute 164
Dokument l6schen 72, 74
Dokument piirfen 43

Loschen Dokument 74

Loschen eines Dokuments 72
Loschen von Verknipfungen 75, 77
LinkDocuments 108, 109

Login 68, 70

Dokument priifen 44 Loglnterface 179

Dokument sperren 94, 95 N

Dokument suchen 46, 49, 51 Neue Version einspielen 52, 54, 56, 57, 59, 61
Dokumentanlage 30, 32, 34, 35, 37, 38

Dokumentation 4 o

Dokumente freigeben 39, 41 Oracle 3

Dokumente verknipfen 108, 109 P

Dokumentfreigabe 39, 41
Dokumentklassen-Hooks 134
Dokumentsuche 46, 49, 51

PDF-Dokumente bearbeiten 63, 66, 67
PDF-Dokumente erzeugen 63, 66, 67
Postkorb 78, 81

E Prifung Dokument 43, 44
E-Mails senden bei Wiedervorlage 89, 91, 93 PredefinedValueSet 167
Eigenschaftswerte aktualisieren 24, 26, 28 R

Eigenschaftswerte validieren 102, 104, 106

Rechtliche Hinweise 2
Redlining 80
ReleaseDocument 39, 41

Einleitung 3
Einspielen neuer Version 52, 54, 56, 57, 59, 61
Entwicklungsumgebung 5, 7

Remote Debugging 185
Erstellen von Hook-Projekten 12

RepositoryField 168
G
GetDocumentList 46, 49, 51

S
ScriptCalllnterface 177

SearchDocument 46, 49, 51
Senden Wiedervorlage 83, 84, 85, 87
SendHoldFile 78, 81, 83, 84, 85, 87
Signaturelnfo 161

Sperren Dokument 94, 95
SqlD3Interface 170

Stammdaten 97

Start 3

Statustransfer 99, 100

Suche Dokument 46, 49, 51

Sun 3

T
TIFF-Dokumente bearbeiten 63, 66, 67
TIFF-Dokumente erzeugen 63, 66, 67

U
Unlink 75, 77
UpdateAttributes 24, 26, 28

d.veLop

User 165
UserGroup 166
UserOrUserGroup 166

\"

ValidateAttributes 102, 104, 106

Validieren von Eigenschaftswerten 102, 104, 106
Validierungshooks 122

VerifyDocument 43, 44

Verknipfungen l6schen 75, 77

Voraussetzungen 3

w

Web-Veroffentlichung 111, 112,113, 115, 116, 118
Wertemengen-Hooks 124

Wiedervorlage E-Mails senden 89, 91, 93
Wiedervorlage senden 83, 84, 85, 87

Workflow 120

WriteRedline 80

	Impressum/ Rechtliche Hinweise
	Einleitung
	Über diese Dokumentation
	Voraussetzungen
	Groovy

	Entwicklungsumgebung
	Eclipse als Entwicklungsumgebung
	Erstellen von Hook-Projekten
	IntelliJ IDEA als Entwicklungsumgebung

	Groovy Hook-Typen
	d.3-Eintrittspunkte
	Abhängige Dateien
	hook_dep_doc_entry_10
	hook_dep_doc_exit_10

	Aktualisieren der Eigenschaftswerte (UpdateAttributes)
	hook_upd_attrib_entry_20
	hook_upd_attrib_exit_10
	hook_upd_attrib_exit_20

	Dokumentanlage (ImportDocument)
	hook_hostimp_entry_10
	hook_insert_entry_10
	hook_insert_entry_20
	hook_insert_exit_10
	hook_insert_exit_20
	hook_insert_exit_30

	Dokumente freigeben (ReleaseDocument)
	hook_release_entry_10
	hook_release_exit_10

	Dokument prüfen (VerifyDocument)
	hook_verify_entry_10
	hook_verify_exit_10

	Dokumentsuche (GetDocumentList/SearchDocument)
	hook_search_entry_05
	hook_search_entry_10
	hook_search_entry_20
	hook_search_exit_30

	Einspielen einer neuen Version (ImportNewVersionDocument)
	hook_new_version_entry_10
	hook_new_version_entry_20
	hook_new_version_entry_30
	hook_new_version_exit_10
	hook_new_version_exit_20
	hook_new_version_exit_30

	Erzeugen/ Bearbeiten von TIFF- oder PDF-Dokumenten
	hook_rendition_entry_10
	hook_rendition_entry_20
	hook_rendition_exit_30

	Login
	hook_val_passwd_entry_10
	hook_val_passwd_exit_10

	Löschen eines Dokuments (DeleteDocument)
	hook_delete_entry_10
	hook_delete_exit_10

	Löschen von Verknüpfungen (Unlink)
	hook_unlink_entry_30
	hook_unlink_exit_10

	Postkorb (SendHoldFile)
	hook_ack_holdfile_exit_10

	Redlining (WriteRedline)
	hook_write_redline_entry_10e
	hook_write_redline_exit_30

	Senden einer Wiedervorlage (SendHoldfile)
	hook_holdfile_entry_10
	hook_holdfile_entry_20
	hook_holdfile_entry_30
	hook_holdfile_exit_10

	Senden von E-Mails bei Wiedervorlage
	hook_send_email_entry_10
	hook_send_email_entry_20
	hook_send_email_exit_10

	Sperren eines Dokuments
	hook_block_entry_10
	hook_block_exit_10

	Stammdaten
	hook_on_user_change_exit_10

	Statustransfer
	hook_transfer_entry_30
	hook_transfer_exit_30

	Validieren von Eigenschaftswerten (ValidateAttributes)
	hook_validate_import_entry_10
	hook_validate_search_entry_10
	hook_validate_update_entry_10

	Verknüpfen von Dokumente bzw. Akten (LinkDocuments)
	hook_link_entry_30
	hook_link_exit_10

	Web-Veröffentlichung
	hook_webpublish_entry_10
	hook_webpublish_entry_20
	hook_webpublish_entry_30
	hook_webpublish_exit_10
	hook_webpublish_exit_20
	hook_webpublish_exit_30

	Workflow
	hook_workflow_cancel_exit_20

	Validierungshooks
	Wertemengen-Hooks
	Dokumentklassen-Hooks
	Groovy-Schnittstelle in d.3 admin
	Programmierung von Hook-Funktionen
	d.3-dynamische Rückmeldungen aus den Hook-Funktionen
	Nummernkreis für Returnwerte
	Nutzung des Transportsystems für Groovy-Funktionen

	Groovy API-Funktionen
	Groovy-API und Nutzung in JPL

	Groovy-Skripte
	d.3-Schnittstelle (D3Interface)
	d.3 Archiv (ArchiveInterface)
	Archivobjekte (ArchiveObject)
	Dokument (Document)
	Dokumentversionen (DocumentVersion)
	Dateiversionen (PhysicalVersion)
	abhängige Dateien (DependentFile)
	Signaturen (SignatureInfo)

	Systemeigenschaften (DocumentSysValue)
	Notizen (DocumentNote)

	Dokumentart (DocumentType)
	Eigenschaften einer Dokumentart (DocumentTypeAttribute)

	Benutzer (User)
	Benutzergruppen (UserGroup/UserOrUserGroup)
	Wertemengen (PredefinedValueSet)
	Eigenschaftsfelder (RepositoryField)
	Berechtigungsprofil (AuthorizationProfile)

	d.3 SQL Datenbank (SqlD3Interface)
	Client API (D3RemoteInterface)
	Server API Funktionen (ScriptCallInterface)
	Config-Parameter (ConfigInterface)
	Logging (LogInterface)
	Hook-Eigenschaften (HookInterface)
	Fehlerbehandlung (D3Exception)
	Storagemanager
	d.3-Systemeigenschaften

	Debugging
	Remote Debugging mit Eclipse
	Remote Debugging mit IntelliJ IDE

	Groovy-Grundlagen
	Variablen und Strings
	Bedingungen
	Schleifen
	Closures
	Datenbankanbindung
	d.3-Specials
	d.3-Konfigurationsparameter auslesen
	Klasse für globale Konstanten

	Groovy-Hook-Beispiele
	Eintrittspunkte
	InsertEntry_10
	InsertExit_20
	UpdateAttribEntry_20
	Eine Klasse, mehrere Hook-Funktionen

	Validierung
	Wertemengen
	Dokumentklassen

